Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 14(11): 6463-8, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25302668

RESUMO

We experimentally demonstrate an ultracompact PlasMOStor, a plasmon slot waveguide field-effect modulator based on a transparent conducting oxide active region. By electrically modulating the conducting oxide material deposited into the gaps of highly confined plasmonic slot waveguides, we demonstrate field-effect dynamics giving rise to modulation with high dynamic range (2.71 dB/µm) and low waveguide loss (∼0.45 dB/µm). The large modulation strength is due to the large change in complex dielectric function when the signal wavelength approaches the surface plasmon resonance in the voltage-tuned conducting oxide accumulation layer. The results provide insight about the design of ultracompact, nanoscale modulators for future integrated nanophotonic circuits.

2.
Opt Express ; 22(11): 13744-54, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24921567

RESUMO

We demonstrate experimentally and numerically that in fiber tips as they are used in NSOMs azimuthally polarized electrical fields (|E(azi)|2 / |E(tot)|2 ≈55% ± 5% for λ0 = 1550 nm), respectively subwavelength confined (FWHM ≈450 nm ≈λ0/3.5) magnetic fields, are generated for a certain tip aperture diameter (d = 1.4 µm). We attribute the generation of this field distribution in metal-coated fiber tips to symmetry breaking in the bend and subsequent plasmonic mode filtering in the truncated conical taper.

3.
Nano Lett ; 13(9): 4539-45, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23962146

RESUMO

We experimentally demonstrate plasmonic nanocircuits operating as subdiffraction directional couplers optically excited with high efficiency from free-space using optical Yagi-Uda style antennas at λ0 = 1550 nm. The optical Yagi-Uda style antennas are designed to feed channel plasmon waveguides with high efficiency (45% in coupling, 60% total emission), narrow angular directivity (<40°), and low insertion loss. SPP channel waveguides exhibit propagation lengths as large as 34 µm with adiabatically tuned confinement and are integrated with ultracompact (5 × 10 µm(2)), highly dispersive directional couplers, which enable 30 dB discrimination over Δλ = 200 nm with only 0.3 dB device loss.


Assuntos
Nanotecnologia/instrumentação , Óptica e Fotônica , Ressonância de Plasmônio de Superfície , Ouro/química , Refratometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...