Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 438: 138011, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37984000

RESUMO

Biocomposite films were prepared by formulating talipot starch with plant mucilage derived from shoeblack leaves, okra, and seeds of basil, fenugreek, and flax, which were identified as SBM-TSF, OKM-TSF, BSM-TSF, FGM-TSF, and FXM-TSF, respectively. The plant mucilages enhanced the crosslinking of the filmogenic solutions, which increased the film's relative crystallinity. Upon topographical investigation, the biocomposite films exhibited the same compact and homogeneous structures as the native talipot starch film (NTSF), but with finer corrugations. When compared to NTSF, the addition of plant mucilage decreased the moisture content while increasing the thickness and opacity. SBM-TSF showed significantly reduced (p ≤ 0.05) solubility and water vapor permeability, indicating that increased crosslink formation in the film obstructed the water vapor passage. Among all the biocomposite films, the BSM-TSF had the greatest tensile strength, making it more resistant to stretching. Among the studied biocomposite films, SBM-TSF and BSM-TSF demonstrated improved thermal and biodegradation stability.


Assuntos
Mucilagem Vegetal , Amido , Amido/química , Mucilagem Vegetal/química , Vapor , Solubilidade , Permeabilidade , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...