Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986800

RESUMO

Biocompatible poly(lactide-co-glycolide) scaffolds fabricated via electrospinning are having promising properties as implants for the regeneration of fast-growing tissues, which are able to degrade in the body. The hereby-presented research work investigates the surface modification of these scaffolds in order to improve antibacterial properties of this type of scaffolds, as it can increase their application possibilities in medicine. Therefore, the scaffolds were surface-modified by means of pulsed direct current magnetron co-sputtering of copper and titanium targets in an inert atmosphere of argon. In order to obtain different amounts of copper and titanium in the resulting coatings, three different surface-modified scaffold samples were produced by changing the magnetron sputtering process parameters. The success of the antibacterial properties' improvement was tested with the methicillin-resistant bacterium Staphylococcus aureus. In addition, the resulting cell toxicity of the surface modification by copper and titanium was examined using mouse embryonic and human gingival fibroblasts. As a result, the scaffold samples surface-modified with the highest copper to titanium ratio show the best antibacterial properties and no toxicity against mouse fibroblasts, but have a toxic effect to human gingival fibroblasts. The scaffold samples with the lowest copper to titanium ratio display no antibacterial effect and toxicity. The optimal poly(lactide-co-glycolide) scaffold sample is surface-modified with a medium ratio of copper and titanium that has antibacterial properties and is non-toxic to both cell cultures.

2.
Materials (Basel) ; 15(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35888367

RESUMO

Fe-based scaffolds are of particular interest in the technology of biodegradable implants due to their high mechanical properties and biocompatibility. In the present work, using an electroexplosive Fe nanopowder and NaCl particles 100-200 µm in size as a porogen, scaffolds with a porosity of about 70 ± 0.8% were obtained. The effect of the sintering temperature on the structure, composition, and mechanical characteristics of the scaffolds was considered. The optimum parameters of the sintering process were determined, allowing us to obtain samples characterized by plastic deformation and a yield strength of up to 16.2 MPa. The degradation of the scaffolds sintered at 1000 and 1100 °C in 0.9 wt.% NaCl solution for 28 days resulted in a decrease in their strength by 23% and 17%, respectively.

3.
Materials (Basel) ; 15(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35009323

RESUMO

The disadvantage of antifriction Al-Sn alloys with high tin content is their low bearing capacity. To improve this property, the aluminum matrix of the alloys was alloyed with zinc. The powder of Al-10Zn alloy was blended with the powder of pure tin in the proportion of 40/60 (wt.%). The resulting mixture of the powders was compacted in briquettes and sintered in a vacuum furnace. The sintered briquettes were subjected to subsequent pressing in the closed press mold at an elevated temperature. After this processing, the yield strength of the sintered (Al-10Zn)-40Sn composite was 1.6 times higher than that of the two-phase Al-40Sn one. The tribological tests of the composites were carried out according to the pin-on-disk scheme without lubrication at pressures of 1-5 MPa. It was established that the (Al-10Zn)-40Sn composite has higher wear resistance compared with the Al-40Sn one. However, this advantage becomes insignificant with an increase in the pressure. It was found that the main wear mechanism of the investigated composites under the dry friction process is a delamination of their highly deformed matrix grains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...