Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Scanning ; 34(5): 279-83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22331809

RESUMO

While investigating rock varnish, we explored novel uses for an in-situ micromanipulator, including charge collection, sample manipulation, as well as digging and dissection at the micron level. Dual-beam focused ion beam microscopes (DB-FIB or FIBSEM) equipped with micromanipulators have proven to be valuable tools for material science, semiconductor research, and product failure analysis. Researchers in many other disciplines utilize the DB-FIB and micromanipulator for site-specific transmission electron microscope (TEM) foil preparation. We have demonstrated additional applications for in-situ micromanipulators.

2.
Scanning ; 33(2): 78-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21381046

RESUMO

Dual-beam focused ion beam microscopy (FIB/SEM) preparation of rock varnish for high-resolution transmission electron microscopy (HR-TEM) has enabled us to characterize unreported nanostructures. Fossils, unreported textures, and compositional variability were observed at the nanoscale. These techniques could provide a method for studying ancient terrestrial and extra-terrestrial environments to better understand geological processes at the nanoscale.

3.
Astrobiology ; 9(6): 551-62, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19663762

RESUMO

The study of terrestrial geomicrobiology and its relationship to rock weathering processes is an essential tool in developing analogues for similar processes that may have occurred on Mars. Most studies of manganese-enhanced rock varnish have focused on samples taken from warm arid desert regions. Here, we examine samples obtained from eolian-abraded lava flows of the 4700-4800 m high Ashikule Basin in Tibet. Because it receives approximately 300 mm of precipitation annually, this site is nowhere near as dry as Atacama Desert locales. However, the dusty, sulfate-rich, high-altitude and high-UV flux environment of the Tibetan locale offers new insight into rock varnish formation processes in a terrestrial environment that displays some attributes similar to those expected on early Mars. Microprobe measurements reveal that Mn enhancements in varnish are two orders of magnitude above the dust source, but Fe is only enhanced by a factor of three. Manganese-enhancing bacterial forms are not abundant but are still approximately 3 times more common than in Mojave and Sonoran Desert varnishes. In addition to its occurrence in subaerial positions, Tibetan varnish also occurs in micron-scale "pods" enveloped by silica glaze and as remobilized constituents that have migrated into the underlying weathering rind. A lack of surficial Mn-rich varnish, therefore, might not imply the absence of varnish. In contrast to suggestions that silica glaze might be a good source of microbial fossils and a key to varnish formation, we did not observe any clear microfossil forms entombed in silica glaze; further, there is no gradation between varnish and silica glaze but only distinct contacts.


Assuntos
Exobiologia , Sedimentos Geológicos/química , Bactérias/ultraestrutura , Clima Desértico , Meio Ambiente Extraterreno , Manganês , Marte , Microscopia Eletrônica de Varredura , Dióxido de Silício/química , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...