Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 15(1): e16236, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36468184

RESUMO

C-reactive protein (CRP) is an early-stage acute phase protein and highly upregulated in response to inflammatory reactions. We recently identified a novel mechanism that leads to a conformational change from the native, functionally relatively inert, pentameric CRP (pCRP) structure to a pentameric CRP intermediate (pCRP*) and ultimately to the monomeric CRP (mCRP) form, both exhibiting highly pro-inflammatory effects. This transition in the inflammatory profile of CRP is mediated by binding of pCRP to activated/damaged cell membranes via exposed phosphocholine lipid head groups. We designed a tool compound as a low molecular weight CRP inhibitor using the structure of phosphocholine as a template. X-ray crystallography revealed specific binding to the phosphocholine binding pockets of pCRP. We provide in vitro and in vivo proof-of-concept data demonstrating that the low molecular weight tool compound inhibits CRP-driven exacerbation of local inflammatory responses, while potentially preserving pathogen-defense functions of CRP. The inhibition of the conformational change generating pro-inflammatory CRP isoforms via phosphocholine-mimicking compounds represents a promising, potentially broadly applicable anti-inflammatory therapy.


Assuntos
Proteína C-Reativa , Fosforilcolina , Humanos , Fosforilcolina/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Membrana Celular/metabolismo , Anti-Inflamatórios
2.
Artigo em Inglês | MEDLINE | ID: mdl-34798417

RESUMO

CRP is an important mediator of the inflammatory response. Pro-inflammatory CRP effects are mediated by pCRP* and mCRP, dissociation products of the native pCRP. The concentration of pCRP during inflammation may rise up to concentrations 1000-fold from baseline. By prevention of the conformational change from pCRP to pCRP*, pro-inflammatory immune responses can be inhibited and local tissue damage reduced. 3-(Dibutylamino)propylphosphonic acid (C10m) is a new substance that can suppress ischemic-reperfusion injury by targeting CRP in the complement cascade. It hampers dissociation of pCRP into its monomers, thus preventing exacerbation of tissue inflammation subsequent to reperfusion injury. In this study, the pharmacokinetics and metabolism of the new drug candidate C10m was investigated. A sensitive and selective method for detection of C10m and its metabolites from plasma and urine was developed with LC-MS and LC-MS/MS coupling. The LLOQ is at 0.1 µg mL-1 and recovery at 87.4% ± 2.8%. Accuracy and precision were within 15% coefficient of variation and nominal concentrations, respectively. Concentration time profile after i.v. bolus injection of C10m was analyzed by LC-MS/MS. Bioavailability has shown to be below 30%. Most likely due to the compounds' very polar chemical properties, no phase-I or phase-II metabolism could be observed. Absence of phase-I metabolism was cross-checked by performing microsomal incubations. Our study revealed that C10m is rapidly eliminated via urine excretion and that half-times appear to be increased with coadministration of the target pCRP.


Assuntos
Anti-Inflamatórios/farmacocinética , Cromatografia Líquida/métodos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fosforilcolina/farmacocinética , Espectrometria de Massas em Tandem/métodos , Animais , Anti-Inflamatórios/sangue , Anti-Inflamatórios/urina , Proteínas do Sistema Complemento/imunologia , Humanos , Espectrometria de Massas , Traumatismo por Reperfusão Miocárdica/imunologia , Fosforilcolina/sangue , Fosforilcolina/urina , Ratos
3.
Front Immunol ; 12: 620963, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679764

RESUMO

Platelets are clearly central to thrombosis and hemostasis. In addition, more recently, evidence has emerged for non-hemostatic roles of platelets including inflammatory and immune reactions/responses. Platelets express immunologically relevant ligands and receptors, demonstrate adhesive interactions with endothelial cells, monocytes and neutrophils, and toll-like receptor (TLR) mediated responses. These properties make platelets central to innate and adaptive immunity and potential candidate key mediators of autoimmune disorders. Multiple sclerosis (MS) is the most common chronic autoimmune central nervous system (CNS) disease. An association between platelets and MS was first indicated by the increased adhesion of platelets to endothelial cells. This was followed by reports identifying structural and functional changes of platelets, their chronic activation in the peripheral blood of MS patients, platelet presence in MS lesions and the more recent revelation that these structural and functional abnormalities are associated with all MS forms and stages. Investigations based on the murine experimental autoimmune encephalomyelitis (EAE) MS model first revealed a contribution to EAE pathogenesis by exacerbation of CNS inflammation and an early role for platelets in EAE development via platelet-neuron and platelet-astrocyte associations, through sialated gangliosides in lipid rafts. Our own studies refined and extended these findings by identifying the critical timing of platelet accumulation in pre-clinical EAE and establishing an initiating and central rather than merely exacerbating role for platelets in disease development. Furthermore, we demonstrated platelet-neuron associations in EAE, coincident with behavioral changes, but preceding the earliest detectable autoreactive T cell accumulation. In combination, these findings establish a new paradigm by asserting that platelets play a neurodegenerative as well as a neuroinflammatory role in MS and therefore, that these two pathological processes are causally linked. This review will discuss the implications of these findings for our understanding of MS, for future applications for imaging toward early detection of MS, and for novel strategies for platelet-targeted treatment of MS.


Assuntos
Plaquetas/fisiologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Doenças Neurodegenerativas/imunologia , Neurônios/fisiologia , Linfócitos T/imunologia , Animais , Comunicação Celular , Humanos , Camundongos , Imagem Molecular , Terapia de Alvo Molecular , Inflamação Neurogênica , Neuroproteção
4.
Nature ; 574(7776): 63-68, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31554967

RESUMO

The gp130 receptor cytokines IL-6 and CNTF improve metabolic homeostasis but have limited therapeutic use for the treatment of type 2 diabetes. Accordingly, we engineered the gp130 ligand IC7Fc, in which one gp130-binding site is removed from IL-6 and replaced with the LIF-receptor-binding site from CNTF, fused with the Fc domain of immunoglobulin G, creating a cytokine with CNTF-like, but IL-6-receptor-dependent, signalling. Here we show that IC7Fc improves glucose tolerance and hyperglycaemia and prevents weight gain and liver steatosis in mice. In addition, IC7Fc either increases, or prevents the loss of, skeletal muscle mass by activation of the transcriptional regulator YAP1. In human-cell-based assays, and in non-human primates, IC7Fc treatment results in no signs of inflammation or immunogenicity. Thus, IC7Fc is a realistic next-generation biological agent for the treatment of type 2 diabetes and muscle atrophy, disorders that are currently pandemic.


Assuntos
Receptor gp130 de Citocina/metabolismo , Citocinas/síntese química , Citocinas/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Imunoglobulina G/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Ligação Competitiva , Citocinas/química , Diabetes Mellitus Tipo 2/metabolismo , Desenho de Fármacos , Fígado Gorduroso/prevenção & controle , Teste de Tolerância a Glucose , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Incretinas/metabolismo , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Obesidade/metabolismo , Pâncreas/metabolismo , Fosfoproteínas/metabolismo , Engenharia de Proteínas , Receptores de Interleucina-6/metabolismo , Transdução de Sinais , Fatores de Transcrição , Aumento de Peso/efeitos dos fármacos , Proteínas de Sinalização YAP
5.
J Med Chem ; 62(10): 5242-5248, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31038950

RESUMO

Herein we describe the development of a focused series of functionalized pyridazin-3(2 H)-one-based formyl peptide receptor (FPR) agonists that demonstrate high potency and biased agonism. The compounds described demonstrated biased activation of prosurvival signaling, ERK1/2 phosphorylation, through diminution of the detrimental FPR1/2-mediated intracellular calcium (Cai2+) mobilization. Compound 50 showed an EC50 of 0.083 µM for phosphorylation of ERK1/2 and an approximate 20-fold bias away from Cai2+ mobilization at the hFPR1.


Assuntos
Pirazinas/síntese química , Pirazinas/farmacologia , Receptores de Formil Peptídeo/agonistas , Proteínas Sanguíneas/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Descoberta de Drogas , Células HL-60 , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica , Receptores de Lipoxinas , Relação Estrutura-Atividade
6.
Diabetes ; 68(2): 395-408, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30425061

RESUMO

Targeting cell division autoantigen 1 (CDA1) is postulated to attenuate the profibrotic actions of transforming growth factor-ß in diabetic nephropathy. This study has identified a regulatory protein for CDA1 and has then used genetic and pharmacological approaches to test in vivo whether strategies to target this pathway would lead to reduced renal injury. A novel protein, named CDA1BP1 (CDA1 binding protein 1), was identified as critical in regulating the profibrotic activity of CDA1. Genetic deletion of CDA1BP1 attenuated key parameters of renal fibrosis in diabetic mice. Furthermore, a series of short synthetic CDA1BP1 peptides competitively inhibited CDA1-CDA1BP1 binding in vitro with a hybrid peptide, CHA-050, containing a 12mer CDA1BP1 peptide and a previously known "cell-penetrating peptide," dose-dependently reducing expression of collagens I and III in HK-2 cells. In vivo, a d-amino acid retro-inverso peptide, CHA-061, significantly attenuated diabetes-associated increases in the renal expression of genes involved in fibrotic and proinflammatory pathways. In a delayed intervention study, CHA-061 treatment reversed diabetes-associated molecular and pathological changes within the kidney. Specifically, CHA-061 significantly attenuated renal extracellular matrix accumulation and glomerular injury. Taken together, targeting the CDA1/CDA1BP1 axis is a safe, efficacious, and feasible approach to retard experimental diabetic nephropathy.


Assuntos
Autoantígenos/metabolismo , Proteínas de Transporte/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Fibrose/metabolismo , Rim/metabolismo , Rim/patologia , Animais , Autoantígenos/genética , Proteínas de Transporte/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Fibrose/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Fatores de Transcrição/metabolismo
7.
Angew Chem Int Ed Engl ; 54(26): 7515-9, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-25962581

RESUMO

A unique two-step modular system for site-specific antibody modification and conjugation is reported. The first step of this approach uses enzymatic bioconjugation with the transpeptidase Sortase A for incorporation of strained cyclooctyne functional groups. The second step of this modular approach involves the azide-alkyne cycloaddition click reaction. The versatility of the two-step approach has been exemplified by the selective incorporation of fluorescent dyes and a positron-emitting copper-64 radiotracer for fluorescence and positron-emission tomography imaging of activated platelets, platelet aggregates, and thrombi, respectively. This flexible and versatile approach could be readily adapted to incorporate a large array of tailor-made functional groups using reliable click chemistry whilst preserving the activity of the antibody or other sensitive biological macromolecules.


Assuntos
Anticorpos Monoclonais/química , Tomografia por Emissão de Pósitrons/métodos , Proteínas Recombinantes/química , Animais , Química Click , Camundongos , Estrutura Molecular
8.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 12): 3320-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25478849

RESUMO

Although part of the coenzyme A pathway, vanin 1 (also known as pantetheinase) sits on the cell surface of many cell types as an ectoenzyme, catalyzing the breakdown of pantetheine to pantothenic acid (vitamin B5) and cysteamine, a strong reducing agent. Vanin 1 was initially discovered as a protein involved in the homing of leukocytes to the thymus. Numerous studies have shown that vanin 1 is involved in inflammation, and more recent studies have shown a key role in metabolic disease. Here, the X-ray crystal structure of human vanin 1 at 2.25 Šresolution is presented, which is the first reported structure from the vanin family, as well as a crystal structure of vanin 1 bound to a specific inhibitor. These structures illuminate how vanin 1 can mediate its biological roles by way of both enzymatic activity and protein-protein interactions. Furthermore, it sheds light on how the enzymatic activity is regulated by a novel allosteric mechanism at a domain interface.


Assuntos
Amidoidrolases/química , Amidoidrolases/antagonistas & inibidores , Cristalografia por Raios X , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/química , Humanos , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína
9.
Diabetes Care ; 37(11): 3121-3, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25125506

RESUMO

OBJECTIVE: To evaluate the safety and efficacy of methazolamide as a potential therapy for type 2 diabetes. RESEARCH DESIGN AND METHODS: This double-blind, placebo-controlled study randomized 76 patients to oral methazolamide (40 mg b.i.d.) or placebo for 24 weeks. The primary efficacy end point for methazolamide treatment was a placebo-corrected reduction in HbA1c from baseline after 24 weeks (ΔHbA1c). RESULTS: Mean ± SD baseline HbA1c was 7.1 ± 0.7% (54 ± 5 mmol/mol; n = 37) and 7.4 ± 0.6% (57 ± 5 mmol/mol; n = 39) in the methazolamide and placebo groups, respectively. Methazolamide treatment was associated with a ΔHbA1c of -0.39% (95% CI -0.82, 0.04; P < 0.05) (-4.3 mmol/mol [-9.0, 0.4]), an increase in the proportion of patients achieving HbA1c ≤6.5% (48 mmol/mol) from 8 to 33%, a rapid reduction in alanine aminotransferase (∼10 units/L), and weight loss (2%) in metformin-cotreated patients. CONCLUSIONS: Methazolamide is the archetype for a new intervention in type 2 diabetes with clinical benefits beyond glucose control.


Assuntos
Inibidores da Anidrase Carbônica/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Metazolamida/uso terapêutico , Idoso , Inibidores da Anidrase Carbônica/efeitos adversos , Método Duplo-Cego , Feminino , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Metformina/uso terapêutico , Metazolamida/efeitos adversos , Pessoa de Meia-Idade , Redução de Peso/efeitos dos fármacos
11.
PLoS One ; 8(7): e69193, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874911

RESUMO

Seleno-organic glutathione peroxidase (GPx) mimetics, including ebselen (Eb), have been tested in in vitro studies for their ability to scavenge reactive oxygen and nitrogen species, including hydrogen peroxide and peroxynitrite. In this study, we investigated the efficacies of two Eb analogues, m-hydroxy ebselen (ME) and ethanol-ebselen (EtE) and compared these with Eb in cell based assays. We found that ME is superior in attenuating the activation of hydrogen peroxide-induced pro-inflammatory mediators, ERK and P38 in human aortic endothelial cells. Consequently, we investigated the effects of ME in an in vivo model of diabetes, the ApoE/GPx1 double knockout (dKO) mouse. We found that ME attenuates plaque formation in the aorta and lesion deposition within the aortic sinus of diabetic dKO mice. Oxidative stress as assessed by 8-OHdG in urine and nitrotyrosine immunostaining in the aortic sinus and kidney tubules, was reduced by ME in diabetic dKO mice. ME also attenuated diabetes-associated renal injury which included tubulointerstitial fibrosis and glomerulosclerosis. Furthermore, the bioactivity of the pro-fibrotic cytokine transforming growth factor-ß (TGF-ß) as assessed by phospho-Smad2/3 immunostaining was attenuated after treatment with ME. TGF-ß-stimulated increases in collagen I and IV gene expression and protein levels were attenuated by ME in rat kidney tubular cells. However, in contrast to the superior activity of ME in in vitro and cell based assays, ME did not further augment the attenuation of diabetes-associated atherosclerosis and renal injury in our in vivo model when compared with Eb. In conclusion, this study strengthens the notion that bolstering GPx-like activity using synthetic mimetics may be a useful therapeutic strategy in lessening the burden of diabetic complications. However, these studies highlight the importance of in vivo analyses to test the efficacies of novel Eb analogues, as in vitro and cell based assays are only partly predictive of the in vivo situation.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/tratamento farmacológico , Azóis/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Glutationa Peroxidase/deficiência , Compostos Organosselênicos/uso terapêutico , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Azóis/química , Linhagem Celular , Diabetes Mellitus Experimental , Nefropatias Diabéticas/metabolismo , Glutationa Peroxidase/genética , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Isoindóis , Masculino , Camundongos , Camundongos Knockout , Modelos Químicos , Compostos Organosselênicos/química , Ratos
12.
Cardiovasc Res ; 96(1): 64-72, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22798388

RESUMO

AIMS: Elevated serum C-reactive protein (CRP) following myocardial infarction (MI) is associated with poor outcomes. Although animal studies have indicated a direct pathogenic role of CRP, the mechanism underlying this remains elusive. Dissociation of pentameric CRP (pCRP) into pro-inflammatory monomers (mCRP) may directly link CRP to inflammation. We investigated whether cellular microparticles (MPs) can convert pCRP to mCRP and transport mCRP following MI. METHODS AND RESULTS: MPs enriched in lysophosphatidylcholine were obtained from cell cultures and patient whole-blood samples collected following acute MI and control groups. Samples were analysed by native western blotting and flow cytometry. MPs were loaded with mCRP in vitro and incubated with endothelial cells prior to staining with monoclonal antibodies. In vitro experiments demonstrated that MPs were capable of converting pCRP to mCRP which could be inhibited by the anti-CRP compound 1,6 bis-phosphocholine. Significantly more mCRP was detected on MPs from patients following MI compared with control groups by western blotting and flow cytometry (P = 0.0005 for association). MPs containing mCRP were able to bind to the surface of endothelial cells and generate pro-inflammatory signals in vitro, suggesting a possible role of MPs in transport and delivery of pro-inflammatory mCRP in vascular disease. CONCLUSION: Circulating MPs can convert pCRP to pro-inflammatory mCRP in patients following MI, demonstrating for the first time mCRP generation in vivo and its detection in circulating blood. MPs can bind to cell membranes and transfer mCRP to the cell surface, suggesting a possible mCRP transport/delivery role of MPs in the circulation.


Assuntos
Proteína C-Reativa/metabolismo , Micropartículas Derivadas de Células/metabolismo , Lisofosfolipídeos/metabolismo , Infarto do Miocárdio/sangue , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Diabetes ; 61(8): 2146-54, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22586591

RESUMO

We previously used Gene Expression Signature technology to identify methazolamide (MTZ) and related compounds with insulin sensitizing activity in vitro. The effects of these compounds were investigated in diabetic db/db mice, insulin-resistant diet-induced obese (DIO) mice, and rats with streptozotocin (STZ)-induced diabetes. MTZ reduced fasting blood glucose and HbA(1c) levels in db/db mice, improved glucose tolerance in DIO mice, and enhanced the glucose-lowering effects of exogenous insulin administration in rats with STZ-induced diabetes. Hyperinsulinemic-euglycemic clamps in DIO mice revealed that MTZ increased glucose infusion rate and suppressed endogenous glucose production. Whole-body or cellular oxygen consumption rate was not altered, suggesting MTZ may inhibit glucose production by different mechanism(s) to metformin. In support of this, MTZ enhanced the glucose-lowering effects of metformin in db/db mice. MTZ is known to be a carbonic anhydrase inhibitor (CAI); however, CAIs acetazolamide, ethoxyzolamide, dichlorphenamide, chlorthalidone, and furosemide were not effective in vivo. Our results demonstrate that MTZ acts as an insulin sensitizer that suppresses hepatic glucose production in vivo. The antidiabetic effect of MTZ does not appear to be a function of its known activity as a CAI. The additive glucose-lowering effect of MTZ together with metformin highlights the potential utility for the management of type 2 diabetes.


Assuntos
Glicemia/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Resistência à Insulina/fisiologia , Fígado/metabolismo , Metazolamida/uso terapêutico , Animais , Glicemia/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Técnica Clamp de Glucose , Glucose-6-Fosfatase/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Insulina/uso terapêutico , Masculino , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Consumo de Oxigênio/efeitos dos fármacos , Fosfoenolpiruvato Carboxiquinase (ATP)/efeitos dos fármacos , Ácido Pirúvico/metabolismo , Ratos , Ratos Sprague-Dawley
14.
ACS Med Chem Lett ; 3(4): 303-7, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-24900468

RESUMO

Respiratory infections caused by human rhinovirus are responsible for severe exacerbations of underlying clinical conditions such as asthma in addition to their economic cost in terms of lost working days due to illness. While several antiviral compounds for treating rhinoviral infections have been discovered, none have succeeded, to date, in reaching approval for clinical use. We have developed a potent, orally available rhinovirus inhibitor 6 that has progressed through early clinical trials. The compound shows favorable pharmacokinetic and activity profiles and has a confirmed mechanism of action through crystallographic studies of a rhinovirus-compound complex. The compound has now progressed to phase IIb clinical studies of its effect on natural rhinovirus infection in humans.

15.
Arterioscler Thromb Vasc Biol ; 31(9): 2015-23, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21659646

RESUMO

OBJECTIVE: Therapeutic hypothermia is successfully used, for example, in cardiac surgery to protect organs from ischemia. Cardiosurgical procedures, especially in combination with extracorporeal circulation, and hypothermia itself are potentially prothrombotic. Despite the obvious need, the long half-life of antiplatelet drugs and thus the risk of postoperative bleedings have restricted their use in cardiac surgery. We describe here the design and testing of a unique recombinant hypothermia-controlled antiplatelet fusion protein with the aim of providing increased safety of hypothermia, as well as cardiac surgery. METHODS AND RESULTS: An elastin-mimetic polypeptide was fused to an activation-specific glycoprotein (GP) IIb/IIIa-blocking single-chain antibody. In silico modeling illustrated the sterical hindrance of a ß-spiral conformation of elastin-mimetic polypeptide preventing the single-chain antibody from inhibiting GPIIb/IIIa at 37°C. Circular dichroism spectra demonstrated reverse temperature transition, and flow cytometry showed binding to and blocking of GPIIb/IIIa at hypothermic body temperature (≤32°C) but not at normal body temperature. In vivo thrombosis in mice was selectively inhibited at hypothermia but not at 37°C. CONCLUSIONS: This is the first description of a broadly applicable pharmacological strategy by which the activity of a potential drug can be controlled by temperature. In particular, this drug steerability may provide substantial benefits for antiplatelet therapy.


Assuntos
Hipotermia Induzida , Inibidores da Agregação Plaquetária/administração & dosagem , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/antagonistas & inibidores , Proteínas Recombinantes de Fusão/administração & dosagem , Tropoelastina/administração & dosagem , Animais , Dicroísmo Circular , Ponte de Artéria Coronária , Fibrinogênio/metabolismo , Humanos , Camundongos , Modelos Moleculares , Agregação Plaquetária , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/administração & dosagem , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo
16.
PLoS One ; 6(4): e19190, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21552524

RESUMO

BACKGROUND: Staphylococcus aureus (S. aureus) is a common pathogen capable of causing life-threatening infections. Staphylococcal superantigen-like protein 5 (SSL5) has recently been shown to bind to platelet glycoproteins and induce platelet activation. This study investigates further the interaction between SSL5 and platelet glycoproteins. Moreover, using a glycan discovery approach, we aim to identify potential glycans to therapeutically target this interaction and prevent SSL5-induced effects. METHODOLOGY/PRINCIPAL FINDINGS: In addition to platelet activation experiments, flow cytometry, immunoprecipitation, surface plasmon resonance and a glycan binding array, were used to identify specific SSL5 binding regions and mediators. We independently confirm SSL5 to interact with platelets via GPIbα and identify the sulphated-tyrosine residues as an important region for SSL5 binding. We also identify the novel direct interaction between SSL5 and the platelet collagen receptor GPVI. Together, these receptors offer one mechanistic explanation for the unique functional influences SSL5 exerts on platelets. A role for specific families of platelet glycans in mediating SSL5-platelet interactions was also discovered and used to identify and demonstrate effectiveness of potential glycan based inhibitors in vitro. CONCLUSIONS/SIGNIFICANCE: These findings further elucidate the functional interactions between SSL5 and platelets, including the novel finding of a role for the GPVI receptor. We demonstrate efficacy of possible glycan-based approaches to inhibit the SSL5-induced platelet activation. Our data warrant further work to prove SSL5-platelet effects in vivo.


Assuntos
Plaquetas/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Polissacarídeos/farmacologia , Staphylococcus aureus/metabolismo , Superantígenos/farmacologia , Plaquetas/metabolismo , Sequência de Carboidratos , Relação Dose-Resposta a Droga , Epitopos/metabolismo , Células HL-60 , Humanos , Glicoproteínas de Membrana/química , Dados de Sequência Molecular , Complexo Glicoproteico GPIb-IX de Plaquetas , Polissacarídeos/química , Polissacarídeos/metabolismo , Especificidade por Substrato , Sulfatos/metabolismo , Superantígenos/química , Superantígenos/metabolismo , Tirosina/metabolismo
17.
Physiol Genomics ; 43(3): 110-20, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21081660

RESUMO

Insulin resistance is a heterogeneous disorder caused by a range of genetic and environmental factors, and we hypothesize that its etiology varies considerably between individuals. This heterogeneity provides significant challenges to the development of effective therapeutic regimes for long-term management of type 2 diabetes. We describe a novel strategy, using large-scale gene expression profiling, to develop a gene expression signature (GES) that reflects the overall state of insulin resistance in cells and patients. The GES was developed from 3T3-L1 adipocytes that were made "insulin resistant" by treatment with tumor necrosis factor-α (TNF-α) and then reversed with aspirin and troglitazone ("resensitized"). The GES consisted of five genes whose expression levels best discriminated between the insulin-resistant and insulin-resensitized states. We then used this GES to screen a compound library for agents that affected the GES genes in 3T3-L1 adipocytes in a way that most closely resembled the changes seen when insulin resistance was successfully reversed with aspirin and troglitazone. This screen identified both known and new insulin-sensitizing compounds including nonsteroidal anti-inflammatory agents, ß-adrenergic antagonists, ß-lactams, and sodium channel blockers. We tested the biological relevance of this GES in participants in the San Antonio Family Heart Study (n = 1,240) and showed that patients with the lowest GES scores were more insulin resistant (according to HOMA_IR and fasting plasma insulin levels; P < 0.001). These findings show that GES technology can be used for both the discovery of insulin-sensitizing compounds and the characterization of patients into subtypes of insulin resistance according to GES scores, opening the possibility of developing a personalized medicine approach to type 2 diabetes.


Assuntos
Perfilação da Expressão Gênica , Resistência à Insulina/genética , Células 3T3-L1 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Transporte Proteico/efeitos dos fármacos , Reprodutibilidade dos Testes , Fator de Necrose Tumoral alfa/farmacologia , Adulto Jovem
18.
PLoS One ; 5(8): e12309, 2010 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-20808791

RESUMO

BACKGROUND: Topical microbicides, used by women to prevent the transmission of HIV and other sexually transmitted infections are urgently required. Dendrimers are highly branched nanoparticles being developed as microbicides. However, the anti-HIV and HSV structure-activity relationship of dendrimers comprising benzyhydryl amide cores and lysine branches, and a comprehensive analysis of their broad-spectrum anti-HIV activity and mechanism of action have not been published. METHODS AND FINDINGS: Dendrimers with optimized activity against HIV-1 and HSV-2 were identified with respect to the number of lysine branches (generations) and surface groups. Antiviral activity was determined in cell culture assays. Time-of-addition assays were performed to determine dendrimer mechanism of action. In vivo toxicity and HSV-2 inhibitory activity were evaluated in the mouse HSV-2 susceptibility model. Surface groups imparting the most potent inhibitory activity against HIV-1 and HSV-2 were naphthalene disulfonic acid (DNAA) and 3,5-disulfobenzoic acid exhibiting the greatest anionic charge and hydrophobicity of the seven surface groups tested. Their anti-HIV-1 activity did not appreciably increase beyond a second-generation dendrimer while dendrimers larger than two generations were required for potent anti-HSV-2 activity. Second (SPL7115) and fourth generation (SPL7013) DNAA dendrimers demonstrated broad-spectrum anti-HIV activity. However, SPL7013 was more active against HSV and blocking HIV-1 envelope mediated cell-to-cell fusion. SPL7013 and SPL7115 inhibited viral entry with similar potency against CXCR4-(X4) and CCR5-using (R5) HIV-1 strains. SPL7013 was not toxic and provided at least 12 h protection against HSV-2 in the mouse vagina. CONCLUSIONS: Dendrimers can be engineered with optimized potency against HIV and HSV representing a unique platform for the controlled synthesis of chemically defined multivalent agents as viral entry inhibitors. SPL7013 is formulated as VivaGel(R) and is currently in clinical development to provide protection against HIV and HSV. SPL7013 could also be combined with other microbicides.


Assuntos
Antivirais/química , Antivirais/farmacologia , Dendrímeros/química , Dendrímeros/farmacologia , Animais , Antivirais/síntese química , Antivirais/metabolismo , Linhagem Celular , Dendrímeros/síntese química , Dendrímeros/metabolismo , Estabilidade de Medicamentos , Feminino , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Herpesvirus Humano 2/efeitos dos fármacos , Humanos , Lisina/química , Camundongos , Modelos Moleculares , Conformação Molecular , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Relação Estrutura-Atividade
19.
Mol Pharm ; 6(4): 1190-204, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19453158

RESUMO

Dendrimers have potential for delivering chemotherapeutic drugs to solid tumors via the enhanced permeation and retention (EPR) effect. The impact of conjugation of hydrophobic anticancer drugs to hydrophilic PEGylated dendrimer surfaces, however, has not been fully investigated. The current study has therefore characterized the effect on dendrimer disposition of conjugating alpha-carboxyl protected methotrexate (MTX) to a series of PEGylated (3)H-labeled poly-l-lysine dendrimers ranging in size from generation 3 (G3) to 5 (G5) in rats. Dendrimers contained 50% surface PEG and 50% surface MTX. Conjugation of MTX generally increased plasma clearance when compared to conjugation with PEG alone. Conversely, increasing generation reduced clearance, increased metabolic stability and reduced renal elimination of the administered radiolabel. For constructs with molecular weights >20 kDa increasing the molecular weight of conjugated PEG also reduced clearance and enhanced metabolic stability but had only a minimal effect on renal elimination. Tissue distribution studies revealed retention of MTX conjugated smaller (G3-G4) PEG(570) dendrimers (or their metabolic products) in the kidneys. In contrast, the larger G5 dendrimer was concentrated more in the liver and spleen. The G5 PEG(1100) dendrimer was also shown to accumulate in solid Walker 256 and HT1080 tumors, and comparative disposition data in both rats (1 to 2% dose/g in tumor) and mice (11% dose/g in tumor) are presented. The results of this study further illustrate the potential utility of biodegradable PEGylated poly-l-lysine dendrimers as long-circulating vectors for the delivery and tumor-targeting of hydrophobic drugs.


Assuntos
Antimetabólitos Antineoplásicos/farmacocinética , Dendrímeros/farmacocinética , Metotrexato/farmacocinética , Polietilenoglicóis/farmacocinética , Polilisina/farmacocinética , Animais , Antimetabólitos Antineoplásicos/sangue , Antimetabólitos Antineoplásicos/urina , Carcinoma 256 de Walker/metabolismo , Carcinoma 256 de Walker/patologia , Dendrímeros/síntese química , Sistemas de Liberação de Medicamentos , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Rim/efeitos dos fármacos , Taxa de Depuração Metabólica , Metotrexato/sangue , Metotrexato/urina , Camundongos , Camundongos SCID , Ratos , Ratos Nus , Ratos Sprague-Dawley , Células Tumorais Cultivadas
20.
Mol Pharm ; 5(3): 449-63, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18393438

RESUMO

The impact of PEGylation on the pharmacokinetics and biodistribution of (3)H-labeled poly l-lysine dendrimers has been investigated after intravenous administration to rats. The volumes of distribution, clearance and consequently the plasma half-lives of the PEGylated dendrimers were markedly dependent on the total molecular weight of the PEGylated dendrimer, but were not specifically affected by the PEG chain length alone. In general, the larger dendrimer constructs (i.e. >30 kDa) had reduced volumes of distribution, were poorly renally cleared and exhibited extended elimination half-lives ( t 1/2 1-3 days) when compared to the smaller dendrimers (i.e. <20 kDa) which were rapidly cleared from the plasma principally into the urine ( t 1/2 1-10 h). At later time points the larger dendrimers concentrated in the organs of the reticuloendothelial system (liver and spleen); however, the absolute extent of accumulation was low. Size exclusion chromatography of plasma and urine samples revealed that the PEGylated dendrimers were considerably more resistant to biodegradation in vivo than the underivatized poly l-lysine dendrimer cores. The results suggest that the size of PEGylated poly l-lysine dendrimer complexes can be manipulated to optimally dictate their pharmacokinetics, biodegradation and bioresorption behavior.


Assuntos
Dendrímeros/farmacocinética , Polietilenoglicóis/farmacocinética , Polilisina/farmacocinética , Animais , Disponibilidade Biológica , Dendrímeros/administração & dosagem , Dendrímeros/síntese química , Sistemas de Liberação de Medicamentos/métodos , Meia-Vida , Injeções Intravenosas , Masculino , Taxa de Depuração Metabólica , Estrutura Molecular , Peso Molecular , Polilisina/administração & dosagem , Polilisina/sangue , Polilisina/urina , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...