Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JSES Int ; 7(6): 2367-2372, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37969491

RESUMO

Background: Connective tissue subacromial bursa-derived progenitor cells (SBDCs) have been suggested as a potent biologic augment to promote healing of the repaired rotator cuff tendon. Maximizing the amount of retained progenitor cells at the tendon repair site is essential for ensuring an optimal healing environment, warranting a search for proadhesive and proliferative adjuvants. The purpose was to evaluate the effect of magnesium (Mg), platelet-rich plasma (PRP), and a combination of both adjuvants on the in vitro cellular adhesion and proliferation potential of SBDCs on suture material commonly used in rotator cuff surgery. Methods: SBDCs were isolated from subacromial bursa samples harvested during rotator cuff repair and cultured in growth media. Commercially available collagen-coated nonabsorbable flat-braided suture was cut into 1-inch pieces, placed into 48-well culture dishes, and sterilized under ultraviolet light. Either a one-time dose of 5 mM sterile Mg, 0.2 mL of PRP, or a combination of both adjuvants was added, while a group without treatment served as a negative control. Cellular proliferation and adhesion assays on suture material were performed for each treatment condition. Results: Augmenting the suture with Mg resulted in a significantly increased cellular adhesion (total number of attached cells) of SBDCs compared to PRP alone (31,527 ± 19,884 vs. 13,619 ± 8808; P < .001), no treatment (31,527 ± 19,884 vs. 21,643 ± 8194; P = .016), and combination of both adjuvants (31,527 ± 19,884 vs. 17,121 ± 11,935; P < .001). Further, augmentation with Mg achieved a significant increase in cellular proliferation (absorbance) of SBDCs on suture material when compared to the PRP (0.516 ± 0.207 vs. 0.424 ± 0.131; P = .001) and no treatment (0.516 ± 0.207 vs. 0.383 ± 0.094; P < .001) group. The combination of Mg and PRP showed a significantly higher proliferation potential compared to PRP alone (0.512 ± 0.194 vs. 0.424 ± 0.131; P = .001) and no treatment (0.512 ± 0.194 vs. 0.383 ± 0.094; P < .001). There were no significant differences in the remaining intergroup comparisons (P > .05, respectively). Conclusion: Augmenting suture material with Mg resulted in a significantly increased cellular adhesion of SBDCs compared to untreated suture material, as well as augmentation with PRP alone or a combination of both adjuvants. Further, Mg with or without PRP augmentation achieved a significant increase in the cellular proliferation of SBDCs on suture material compared to untreated sutures and augmentation with PRP alone. Application of Mg may be a clinically feasible approach to optimizing the use of SBDCs as a biological augment in rotator cuff repair, while combined augmentation with PRP may harness the full potential for optimized tissue recovery due to the high concentration of PRP-derived growth factors.

2.
Orthop J Sports Med ; 10(11): 23259671221133105, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36479459

RESUMO

Background: Patients with recurrent patellar dislocations with trochlear dysplasia are commonly treated surgically with a tibial tubercle osteotomy (TTO). Recovery and rehabilitation processes are often nonoperative out of concern for fixation failure or fracture. A more accelerated rehabilitation protocol allowing for early weightbearing and quadriceps strengthening may help to improve patient outcomes as long as complications are not increased. Purpose: To evaluate the safety and effectiveness of an accelerated weightbearing and early strengthening postoperative rehabilitation program for patients who undergo TTO. Study Design: Case series; Level of evidence, 4. Methods: Included were patients who underwent unilateral/staged bilateral TTO performed by a single surgeon between August 2013 and February 2018 with ≥6 months of follow-up. The surgical indication was primarily for patients with recurrent patellar instability. In all cases, a diagnostic arthroscopy was performed to evaluate the cartilage surfaces and document patellar tracking. The TTO was performed using a freehand technique and two 3.5-mm fully threaded screws for fixation. Patients underwent an accelerated postoperative rehabilitation program that allowed for weightbearing and lower extremity strengthening starting at 4 weeks. Objective and subjective outcome measures included any postoperative complications, knee range of motion, and patient-reported outcome scores (Kujala Anterior Knee Pain Scale [AKPS] and Knee injury and Osteoarthritis Outcome Score composite [(KOOS5]). Results: A total of 51 knees in 50 patients (38 female, 12 male) with a mean age of 31.24 ± 12.57 years were included in the final analysis. Compared with preoperative values, postoperative maximum knee flexion was significantly improved (117.67° ± 32.65° vs 131.12° ± 9.02°, respectively; P = .022). Postoperative complications included 6 patients with arthrofibrosis requiring manipulation under anesthesia, 4 with removal of symptomatic hardware, 1 tibial fracture (due to a fall), and 1 conversion to patellofemoral arthroplasty. The mean postoperative AKPS and KOOS5 scores were 72.98 ± 21.51 and 75.05 ± 16.02, respectively. Conclusion: Accelerated postoperative rehabilitation in TTO patients was an effective means of treatment with good subjective and objective outcomes and complication rates lower than traditional rehabilitation protocols.

3.
J Shoulder Elbow Surg ; 31(11): e519-e533, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35690347

RESUMO

BACKGROUND: It has been shown that subacromial bursa (SAB) harbors connective tissue progenitor cells. The purpose of this study was to evaluate the effects of implantation of SAB-derived cells (SBCs) suspended in a fibrin sealant bead and implantation of SAB tissue at rotator cuff repair site on biomechanical properties of the repair in a mouse (C57Bl/6) model of supraspinatus tendon (ST) detachment and repair. METHODS: Part 1: Murine SAB tissue was harvested and cultured. Viability of SBCs suspended in 10 µL of fibrin sealant beads was confirmed in vitro and in vivo. Eighty mice underwent right ST detachment and repair augmented with either fibrin sealant bead (control group) or fibrin sealant bead with 100,000 SBCs (study group) applied at the repair site. Part 2: 120 mice underwent right ST detachment and repair and were randomized equally into 4 groups: (1) a tissue group, which received a piece of freshly harvested SAB tissue; (2) a cell group, which received SBCs suspended in fibrin sealant bead; (3) a fibrin sealant group, which received plain fibrin sealant bead without cells; and (4) a control group, which received nothing at the ST repair site. An equal number of mice in each group were killed at 2 and 4 weeks. Specimens underwent biomechanical testing to evaluate failure force (part 1 and 2) and histologic analysis of the repair site (part 1 only). RESULTS: Part 1: The mean failure force in the study group was significantly higher than controls at 2 and 4 weeks (3.25 ± 1.03 N vs. 2.43 ± 0.56 N, P = .01, and 4.08 ± 0.99 N vs. 3.02 ± 0.8 N, P = .004, respectively). Mean cell density of the ST at the repair site was significantly lower in the study group at 2 weeks than in controls (18,292.13 ± 1706.41 vs. 29,501.90 ± 3627.49, P = .001). Study group specimens had lower proteoglycan contents than controls, but this difference was not statistically significant. Part 2: There was no difference in failure force between cell and tissue groups at the 2- and 4-week time points (P = .994 and P = .603, respectively). There was no difference in failure force between fibrin sealant bead and control groups at the 2- and 4-week time points (P = .978 and P = .752, respectively). CONCLUSION: This study shows that the application of SBCs and SAB tissue at the rotator cuff repair site increases the strength of repair in a murine model of rotator cuff detachment and repair.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Camundongos , Animais , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/cirurgia , Adesivo Tecidual de Fibrina/farmacologia , Adesivo Tecidual de Fibrina/uso terapêutico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Proteoglicanas
4.
Connect Tissue Res ; 63(3): 287-297, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34042553

RESUMO

PURPOSE/AIM: The purpose of this study is to identify a cell population within the murine subcromial bursal-derived cells with characteristics compatible to an accepted mesenchymal stem cell description given by the International Society for Cellular Therapy (ISCT). MATERIALS AND METHODS: Murine subacromial bursa was harvested using microsurgical technique. Subacromial bursal-derived cells were classified through colony-forming units, microscopic morphology, fluorescent-activated cell sorting, and differentiation into chondrogenic, adipogenic, and osteogenic lineages. RESULTS: Subacromial bursal samples exhibited cell growth out of the tissue for an average of 115 ± 29 colony-forming units per 1 mL of complete media. Subacromial bursal-derived cells exhibited a long, spindle-shaped, fibroblast-like morphology. Subacromial bursal-derived cells positively expressed mesenchymal stem cell markers CD73, CD90, and CD105, and negatively expressed mesenchymal stem cell markers CD31 and CD45. Subacromial bursal-derived cells, examined by Image J analysis and quantitative gene expression, were found to differentiate into chondrogenic, adipogenic, and osteogenic lineages. CONCLUSIONS: This study demonstrated the feasibility of harvesting murine subacromial bursal tissue and identified a cell population within the subacromial bursa with characteristics compatible to an accepted mesenchymal stem cell description. The results of this study suggest that the mouse subacromial bursal-derived cell population harbors mesenchymal stem cells. Murine subacromial bursal tissue is a potential source for obtaining cells with mesenchymal stem cell characteristics for future utilization in orthopedic research to look into treatment of rotator cuff pathology.


Assuntos
Células-Tronco Mesenquimais , Lesões do Manguito Rotador , Articulação do Ombro , Animais , Bolsa Sinovial/patologia , Diferenciação Celular , Camundongos , Manguito Rotador/patologia , Lesões do Manguito Rotador/patologia
5.
Arthrosc Sports Med Rehabil ; 3(3): e781-e789, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34195645

RESUMO

PURPOSE: To evaluate the effect of a one-time dose of insulin or insulin-like growth factor 1 (IGF-1) on cellular proliferation and migration of subacromial bursa tissue (SBT) over time. METHODS: SBT was harvested from over the rotator cuff tendon in 4 consecutive patients undergoing primary arthroscopic rotator cuff repair. SBT was cultured for 3 weeks in complete media until reaching confluence. The culture dishes were stored in a humidified, low oxygen tension (5% CO2) incubator at 37°C. SBT of each patient underwent treatment with a one-time dose of insulin or IGF-1, whereas nontreated SBT served as a negative control. Cellular proliferation and migration were evaluated after 24, 48, 72, and 96 hours of incubation. SBT-derived cells migrated in the detection field were visualized using fluorescent microscopy. RESULTS: Cellular proliferation at 24, 48, 72, and 96 hours was 1.40 ± 0.27, 1.00 ± 0.20, 1.47 ± 0.31, and 1.68 ± 0.28 for IGF-1; 1.44 ± 0.24, 1.15 ± 0.27, 1.60 ± 0.36, and 1.61 ± 0.32 for insulin; and 1.51 ± 0.35, 1.29 ± 0.33, 1.53 ± 0.35, and 1.57 ± 0.38 for nontreated SBT. Untreated SBT demonstrated a significantly greater proliferation when compared with IGF-1 and insulin within the first 48 hours, although this effect was found to subside by 96 hours. Cellular migration at 24, 48, 72, and 96 hours was 575.7 ± 45.0, 641.6 ± 77.7, 728.3 ± 122.9, and 752.3 ± 114.5 for IGF-1; 528.4 ± 31.3, 592.5 ± 69.8, 664.2 ± 115.2, and 695.6 ± 148.2 for insulin; and 524.4 ± 41.9, 564.4 ± 49.8, 653.2 ± 81.5, and 685.7 ± 115.5 for nontreated SBT. Insulin showed no difference in migration at each timepoint compared to nontreated SBT (P > .05, respectively). CONCLUSIONS: Insulin and IGF-1 initially inhibit cellular proliferation of human SBT, although this effect was found to subside by 96 hours. Further, neither insulin nor IGF-1 changed the slope of cellular migration over time. However, each treatment group demonstrated a significant increase in cellular proliferation and migration. CLINICAL RELEVANCE: In the setting of biologic augmentation of rotator cuff repair, the compatibility and synergistic effect of insulin on human SBT is highly limited.

6.
Arthrosc Sports Med Rehabil ; 3(6): e1975-e1980, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34977656

RESUMO

PURPOSE: To evaluate the effect of magnesium on cellular adhesion and proliferation of human subacromial bursal tissue (SBT), osteoblasts, and tenocytes on nonabsorbable suture tape commonly used in rotator cuff surgery. METHODS: Human SBT cells, primary human osteoblasts (HOBs), and primary human tenocytes were isolated from tissue samples and cultured in growth media. Commercially available collagen-coated nonabsorbable suture tape was cut into one-inch pieces, placed into 48-well culture dishes, sterilized under ultraviolet light, and treated with (+) or without (-) magnesium. For the (+) magnesium group, a one-time dose of 5 mM sterile magnesium chloride was added. Subsequently, cells were plated at a density of 20,000 cells/cm2. For each cell source (SBT, HOBs, tenocytes) cellular proliferation and adhesion assays on suture tape treated (+) or (-) magnesium were performed. RESULTS: SBT, HOBs, and tenocytes each demonstrated the ability to adhere and proliferate on suture tape. Augmenting suture tape with magnesium resulted in a significantly increased cellular adhesion of SBT compared with nonaugmented sutures (P = .001), whereas no significant differences were observed for HOBs (P = .081) and tenocytes (P = .907). Augmentation with magnesium demonstrated no significant difference in cellular proliferation of SBT (P = .856), HOBs (P = .672), and tenocytes (P = .251) compared with nonaugmented sutures. CONCLUSIONS: SBT, osteoblasts, and tenocytes each demonstrated the ability to adhere and proliferate on suture tape. In addition, augmenting the suture with magnesium resulted in a significantly increased cellular adhesion of SBT compared with nonaugmented sutures, whereas no significant differences were observed for osteoblasts and tenocytes. Further, magnesium did not impair the proliferative activity of SBT, osteoblasts, and tenocytes on suture tape used in rotator cuff surgery. CLINICAL RELEVANCE: Modifying the surface of the suture used for repair with application of magnesium may be an inexpensive and technically feasible option to improve the use of SBT for biologic augmentation of rotator cuff repair.

7.
Knee Surg Sports Traumatol Arthrosc ; 29(9): 3124-3132, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33221933

RESUMO

PURPOSE: The primary objective of this study is to evaluate the contact areas, contact pressures, and peak pressures in the medial compartment of the knee in six sequential testing conditions. The secondary objective is to establish how much the medial meniscus is able to extrude, secondary to soft tissue injury while keeping its roots intact. METHODS: Ten cadaveric knees were dissected and tested in six conditions: (1) intact meniscus, (2) 2 mm extrusion, (3) 3 mm extrusion, (4) 4 mm extrusion, (5) maximum extrusion, (6) capsular based meniscal repair. Knees were loaded with a 1000-N axial compressive force at 0°, 30°, 60°, and 90° for each condition. Medial compartment contact area, average contact pressure, and peak contact pressure data were recorded. RESULTS: When compared to the intact state, there was no statistically significant difference in medial compartment contact area at 2 mm of extrusion or 3 mm of extrusion (n.s.). There was a statistically significant decrease in contact area compared to the intact state at 4 mm (p = 0.015) and maximum extrusion (p < 0.001). The repair state was able to improve medial compartment contact area, and there was no statistically significant difference between the repair and the intact states (n.s.). No significant differences were found in the average contact pressure between the repair, intact, or maximum extrusion conditions at any flexion angle (n.s.). No significant differences were found in the peak contact pressure between the repair, intact, or maximum extrusion conditions at any flexion angle (n.s.). CONCLUSION: In this in vitro model, medial meniscus extrusion greater than 4 mm reduced medial compartment contact area, but meniscal extrusion did not significantly increase pressure in the medial compartment. Additionally, meniscal centralization was effective in restoring the medial tibiofemoral contact area to intact state when the meniscal extrusion was secondary to meniscotibial ligament injury. The diagnosis of meniscal extrusion may not necessarily involve meniscal root injury. Since it is known that meniscal extrusion greater than 3 or 4 mm has a biomechanical impact on tibiofemoral compartment contact area and pressures, specific treatments can be established. Centralization restored medial compartment contact area to the intact state.


Assuntos
Traumatismos do Joelho , Lesões do Menisco Tibial , Fenômenos Biomecânicos , Cadáver , Humanos , Articulação do Joelho/cirurgia , Meniscos Tibiais/cirurgia , Lesões do Menisco Tibial/cirurgia
8.
J Shoulder Elbow Surg ; 30(7): 1494-1502, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33197595

RESUMO

BACKGROUND: The role of subacromial bursa in rotator cuff pathology is unclear. Along with recognized inflammatory potential, current data demonstrate the presence of mesenchymal stem cells and potential regenerative properties of the bursa. The purpose of this study was to (1) approximate an in vitro co-culture model that represents interaction between torn rotator cuff tendon and subacromial bursa, (2) quantify the cellular activity of tendon and bursa and their interactions, (3) use this model to induce a state of inflammation present with rotator cuff pathology. METHODS: In part 1, tendon and bursa samples were obtained from 6 patients undergoing rotator cuff repair. Tendon and bursa were cultured alone and together in co-culture wells for 21 days. Markers specific for tenocyte gene expression (tenascin C, decorin, etc) were measured in both tendon and bursa alone and compared to co-culture models. In part 2 of the study, an inflammatory state was induced with interleukin-1ß treatment, and markers of inflammation were measured via protein assay at 0 and 21 days in samples from 7 additional patients. RESULTS: There was an increase in tendon and bursa markers in nearly all groups as evidenced by increased gene expression of known tendon and bursa markers. There was a significant increase in gene expression when torn tendon was co-cultured with bursa compared with culturing alone. Additionally, a state of inflammation was induced as evidenced by increased markers of inflammation, inflammatory protein concentration, and inflammatory cells and disruption of histologic morphology. CONCLUSION: There is a clear interaction between rotator cuff tendon and the milieu produced by the subacromial bursa in this in vitro co-culture system that is significantly different when compared to an isolated culture of tendon and bursa. This system was successfully used to induce a state of inflammation that may represent in vivo inflammation. This in vitro model of rotator cuff pathology can aid investigators in testing effects of agents proposed to improve rotator cuff healing. This can lead to further knowledge regarding effective treatment options.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Bolsa Sinovial , Técnicas de Cocultura , Humanos , Tendões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...