Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 153(5): 2621, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37130001

RESUMO

The Arctic Ocean is undergoing dramatic changes in response to increasing atmospheric concentrations of greenhouse gases. The 2016-2017 Canada Basin Acoustic Propagation Experiment was conducted to assess the effects of the changes in the sea ice and ocean structure in the Beaufort Gyre on low-frequency underwater acoustic propagation and ambient sound. An ocean acoustic tomography array with a radius of 150 km that consisted of six acoustic transceivers and a long vertical receiving array measured the impulse responses of the ocean at a variety of ranges every four hours using broadband signals centered at about 250 Hz. The peak-to-peak low-frequency travel-time variability of the early, resolved ray arrivals that turn deep in the ocean was only a few tens of milliseconds, roughly an order of magnitude smaller than observed in previous tomographic experiments at similar ranges, reflecting the small spatial scale and relative sparseness of mesoscale eddies in the Canada Basin. The high-frequency travel-time fluctuations were approximately 2 ms root-mean-square, roughly comparable to the expected measurement uncertainty, reflecting the low internal-wave energy level. The travel-time spectra show increasing energy at lower frequencies and enhanced semidiurnal variability, presumably due to some combination of the semidiurnal tides and inertial variability.

2.
J Acoust Soc Am ; 148(3): 1663, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33003894

RESUMO

The Pacific Arctic Region has experienced decadal changes in atmospheric conditions, seasonal sea-ice coverage, and thermohaline structure that have consequences for underwater sound propagation. To better understand Arctic acoustics, a set of experiments known as the deep-water Canada Basin acoustic propagation experiment and the shallow-water Canada Basin acoustic propagation experiment was conducted in the Canada Basin and on the Chukchi Shelf from summer 2016 to summer 2017. During the experiments, low-frequency signals from five tomographic sources located in the deep basin were recorded by an array of hydrophones located on the shelf. Over the course of the yearlong experiment, the surface conditions transitioned from completely open water to fully ice-covered. The propagation conditions in the deep basin were dominated by a subsurface duct; however, over the slope and shelf, the duct was seen to significantly weaken during the winter and spring. The combination of these surface and subsurface conditions led to changes in the received level of the sources that exceeded 60 dB and showed a distinct spacio-temporal dependence, which was correlated with the locations of the sources in the basin. This paper seeks to quantify the observed variability in the received signals through propagation modeling using spatially sparse environmental measurements.

3.
Geophys Res Lett ; 47(12): e2020GL088051, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32728302

RESUMO

Less than three decades ago only a small fraction of the Arctic Ocean (AO) was ice free and then only for short periods. The ice cover kept sea surface pCO2 at levels lower relative to other ocean basins that have been exposed year round to ever increasing atmospheric levels. In this study, we evaluate sea surface pCO2 measurements collected over a 6-year period along a fixed cruise track in the Canada Basin. The measurements show that mean pCO2 levels are significantly higher during low ice years. The pCO2 increase is likely driven by ocean surface heating and uptake of atmospheric CO2 with large interannual variability in the contributions of these processes. These findings suggest that increased ice-free periods will further increase sea surface pCO2, reducing the Canada Basin's current role as a net sink of atmospheric CO2.

4.
Sci Adv ; 4(8): eaat6773, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30167462

RESUMO

Arctic Ocean measurements reveal a near doubling of ocean heat content relative to the freezing temperature in the Beaufort Gyre halocline over the past three decades (1987-2017). This warming is linked to anomalous solar heating of surface waters in the northern Chukchi Sea, a main entryway for halocline waters to join the interior Beaufort Gyre. Summer solar heat absorption by the surface waters has increased fivefold over the same time period, chiefly because of reduced sea ice coverage. It is shown that the solar heating, considered together with subduction rates of surface water in this region, is sufficient to account for the observed halocline warming. Heat absorption at the basin margins and its subsequent accumulation in the ocean interior, therefore, have consequences for Beaufort Gyre sea ice beyond the summer season.

5.
Science ; 356(6335): 285-291, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28386025

RESUMO

Arctic sea-ice loss is a leading indicator of climate change and can be attributed, in large part, to atmospheric forcing. Here, we show that recent ice reductions, weakening of the halocline, and shoaling of the intermediate-depth Atlantic Water layer in the eastern Eurasian Basin have increased winter ventilation in the ocean interior, making this region structurally similar to that of the western Eurasian Basin. The associated enhanced release of oceanic heat has reduced winter sea-ice formation at a rate now comparable to losses from atmospheric thermodynamic forcing, thus explaining the recent reduction in sea-ice cover in the eastern Eurasian Basin. This encroaching "atlantification" of the Eurasian Basin represents an essential step toward a new Arctic climate state, with a substantially greater role for Atlantic inflows.

6.
Philos Trans A Math Phys Eng Sci ; 373(2052)2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26347536

RESUMO

Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...