Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 89: 329-38, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25542681

RESUMO

In the current study, Quercetin (QRT) was characterized for thermodynamic and kinetic parameters and found as an excellent glass former. QRT was paired with Ritonavir (RTV) (BCS class-IV antiretroviral) to form stable amorphous form and pharmacologically relevant combination. Binary amorphous forms of RTV and QRT in molar ratios 1:1, 1:2 and 2:1 were prepared by solvent evaporation technique and characterized by XRPD, DSC and FTIR. The prepared binary phases were found to become amorphous after solvent evaporation which was confirmed by disappearance of crystalline peaks from X-ray diffractograms and detecting single Tg in DSC studies. The physical stability studies at 40 °C for 90 days found RTV:QRT 1:2 and RTV:QRT 2:1 phases stable, while trace crystallinity was detected for 1:1M ratio. The temperature stability of RTV:QRT 1:2 and RTV:QRT 2:1 amorphous forms can be attributed to phase solubility of both components where the drug in excess acts as a crystallization inhibitor. Except for RTV:QRT 1:2 ratio, there was no evidence of intermolecular interactions between two components. Almost 5 fold increase in the saturation solubility was achieved for RTV, compared to crystalline counterpart. While for QRT, the solubility advantage was not achieved. In vivo oral bioavailability study was conducted for 1:2 binary amorphous form by using pure RTV as a control. Cmax was improved by 1.26 fold and Tmax was decreased by 2h after comparing with control indicating improved absorption. However no significant enhancement of oral bioavailability (1.12 fold after comparing with control) was found for RTV.


Assuntos
Quercetina/química , Quercetina/metabolismo , Ritonavir/química , Ritonavir/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria/métodos , Cristalização/métodos , Estabilidade de Medicamentos , Vidro/química , Cinética , Ratos , Ratos Wistar , Solubilidade , Solventes/química , Temperatura , Difração de Raios X/métodos
2.
Eur J Pharm Sci ; 62: 57-64, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24878386

RESUMO

The aim of this study was to stabilize the amorphous form of Ritonavir (RTV) a BCS class-II drug with known amorphous stabilizing small molecule Indomethacin (IND) by co-amorphous technology. The co-amorphous samples were prepared by solvent evaporation technique in the molar ratios RTV:IND (2:1), RTV:IND (1:1), RTV:IND (1:2) and their amorphous nature was confirmed by XRPD, DSC and FT-IR. Physical stability studies were carried out at temp 25°C and 40°C for maximum up to 90 days under dry conditions. Solubility and dissolution testing were carried out to investigate the dissolution advantage of prepared co-amorphous systems. The amorphous mixtures of all tested molar ratios were found to become amorphous after solvent evaporation. The same was confirmed by detecting halo pattern in diffractograms of co-amorphous mixtures. The Tg values of all three systems were found to be more than 40°C, the highest being 51.88°C for RTV:IND (2:1) system. Theoretical Tg values were calculated by Gordon-Taylor equation. Insignificant deviation of theoretical Tg values from that of practical one, corroborated by FT-IR studies showed no evidence of intermolecular interactions between RTV and IND. Almost 3-folds increase in the solubility for both amorphous RTV and IND was found as compared to their respective crystalline counterparts. The study demonstrated significant increase in the dissolution rate as well as increase in the total amount of drug dissolved for amorphous RTV, however it failed to demonstrate any significant improvement in the dissolution behavior of IND.


Assuntos
Indometacina/química , Ritonavir/química , Varredura Diferencial de Calorimetria , Cristalização , Estabilidade de Medicamentos , Vidro , Difração de Pó , Solubilidade , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura de Transição , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...