Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896285

RESUMO

In conventional fullerene-based organic photovoltaics (OPVs), in which the excited electrons from the donor are transferred to the acceptor, the electron charge transfer state (eECT) that electrons pass through has a great influence on the device's performance. In a bulk-heterojunction (BHJ) system based on a low bandgap non-fullerene acceptor (NFA), however, a hole charge transfer state (hECT) from the acceptor to the donor has a greater influence on the device's performance. The accurate determination of hECT is essential for achieving further enhancement in the performance of non-fullerene organic solar cells. However, the discovery of a method to determine the exact hECT remains an open challenge. Here, we suggest a simple method to determine the exact hECT level via deconvolution of the EL spectrum of the BHJ blend (ELB). To generalize, we have applied our ELB deconvolution method to nine different BHJ systems consisting of the combination of three donor polymers (PM6, PBDTTPD-HT, PTB7-Th) and three NFAs (Y6, IDIC, IEICO-4F). Under the conditions that (i) absorption of the donor and acceptor are separated sufficiently, and (ii) the onset part of the external quantum efficiency (EQE) is formed solely by the contribution of the acceptor only, ELB can be deconvoluted into the contribution of the singlet recombination of the acceptor and the radiative recombination via hECT. Through the deconvolution of ELB, we have clearly decided which part of the broad ELB spectrum should be used to apply the Marcus theory. Accurate determination of hECT is expected to be of great help in fine-tuning the energy level of donor polymers and NFAs by understanding the charge transfer mechanism clearly.

2.
J Photochem Photobiol B ; 238: 112625, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36529058

RESUMO

Photodynamic therapy (PDT) is a promising non-invasive treatment modality for cancer and can be potentiated by combination with chemotherapy. Here, we combined PDT of novel porphyrin-based photosensitizers with low dose doxorubicin (Dox) to get maximum outcome. Dox potentiated and showed synergism with PDT under in vitro conditions on CT26.WT cells. The current colon cancer treatment strategies assure partial or even complete tumour regression but loco-regional relapse or distant metastasis is the major cause of death despite combination therapy. The spared cells after the treatment contribute to relapse and it is important to study their behaviour in host environment. Hence, we developed relapse models for PDT, Dox and combination treatments by transplanting respectively treated equal number of live cells to mice (n = 5) for tumour formation. Most of the treated cells lost tumour forming ability, but some treatment resistant cells developed tumours in few mice. These tumours served as relapse models and Western blot analysis of tumour samples provided clinically relevant information to delineate resistance strategies of individual as well as combination therapies at molecular level. Our results showed that low dose Dox helped in increasing the tumour inhibiting effect of PDT in combination therapy, but still there are indeed possibilities of relapse at later stages due to chemoresistance and immune suppression that may occur post-treatment. We observed that the combination therapy may also lead to the development of multidrug resistant (MDR) phenotype during relapse. Thus, this study provided clinically relevant information to further strengthen and improve PDT-drug combination therapy in order to avoid relapse and to treat cancer more effectively.


Assuntos
Neoplasias do Colo , Fotoquimioterapia , Porfirinas , Camundongos , Animais , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Fotoquimioterapia/métodos , Recidiva Local de Neoplasia/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Linhagem Celular Tumoral
3.
Adv Sci (Weinh) ; 7(21): 2002395, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33173748

RESUMO

A charge transport layer based on transition metal-oxides prepared by an anhydrous sol-gel method normally requires high-temperature annealing to achieve the desired quality. Although annealing is not a difficult process in the laboratory, it is definitely not a simple process in mass production, such as roll-to-roll, because of the inevitable long cooling step that follows. Therefore, the development of an annealing-free solution-processable metal-oxide is essential for the large-scale commercialization. In this work, a room-temperature processable annealing-free "aqueous" MoO x solution is developed and applied in non-fullerene PBDB-T-2F:Y6 solar cells. By adjusting the concentration of water in the sol-gel route, an annealing-free MoO x with excellent electrical properties is successfully developed. The PBDB-T-2F:Y6 solar cell with the general MoO x prepared by the anhydrous sol-gel method shows a low efficiency of 7.7% without annealing. If this anhydrous MoO x is annealed at 200 °C, the efficiency is recovered to 17.1%, which is a normal value typically observed in conventional structure PBDB-T-2F:Y6 solar cells. However, without any annealing process, the solar cell with aqueous MoO x exhibits comparable performance of 17.0%. In addition, the solar cell with annealing-free aqueous MoO x exhibits better performance and stability without high-temperature annealing compared to the solar cells with PEDOT:PSS.

4.
ChemSusChem ; 10(23): 4668-4689, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-28921883

RESUMO

Co-sensitization is a popular route towards improved efficiency and stability of dye-sensitized solar cells (DSSCs). In this context, the power conversion efficiency (PCE) values of DSSCs incorporating Ru- and porphyrin-based dyes can be improved from 8-11 % to 11-14 % after the addition of additives, co-adsorbents, and co-sensitizers that reduce aggregation and charge recombination in the device. Among the three supporting material types, co-sensitizers play a major role to enhance the performance and stability of DSSCs, which is requried for commercialization. In this Minireview, we highlight the role co-sensitizers play in improving photovoltaic performance of devices containing Ru- and porphyrin-based sensitizers.


Assuntos
Corantes/química , Fontes de Energia Elétrica , Porfirinas/química , Rutênio/química , Energia Solar , Adsorção , Elétrons , Oxirredução , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...