Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12901, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902614

RESUMO

Social insects have evolved a variety of architectural formations. Bees and wasps are well known for their ability to achieve compact structures by building hexagonal cells. Polistes wattii, an open nesting paper wasp species, builds planar hexagonal structures. Here, using the pair correlation function approach, we show that their nests exhibit short-range hexagonal order (no long-range order) akin to amorphous materials. Hexagonal orientational order was well preserved globally. We also show the presence of topological defects such as dislocations (pentagon-heptagon disclination pairs) and Stone-Wales quadrupoles, and discuss how these defects were organised in the nest, thereby restoring order. Furthermore, we suggest the possible role of such defects in shaping nesting architectures of other social insect species.


Assuntos
Vespas , Animais , Abelhas , Comportamento de Nidação , Comportamento Social
2.
Int J Mol Sci ; 19(6)2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882762

RESUMO

Morphologically complex flowers are characterized by bilateral symmetry, tube-like shapes, deep corolla tubes, fused petals, and/or poricidal anthers, all of which constrain the access of insect visitors to floral nectar and pollen rewards. Only a subset of potential pollinators, mainly large bees, learn to successfully forage on such flowers. Thus, complexity may comprise a morphological filter that restricts the range of visitors and thereby increases food intake for successful foragers. Such pollinator specialization, in turn, promotes flower constancy and reduces cross-species pollen transfer, providing fitness benefits to plants with complex flowers. Since visual signals associated with floral morphological complexity are generally honest (i.e., indicate food rewards), pollinators need to perceive and process them. Physiological studies show that bees detect distant flowers through long-wavelength sensitive photoreceptors. Bees effectively perceive complex shapes and learn the positions of contours based on their spatial frequencies. Complex flowers require long handling times by naive visitors, and become highly profitable only for experienced foragers. To explore possible pathways towards the evolution of floral complexity, we discuss cognitive mechanisms that potentially allow insects to persist on complex flowers despite low initial foraging gains, suggest experiments to test these mechanisms, and speculate on their adaptive value.


Assuntos
Flores/anatomia & histologia , Insetos/fisiologia , Plantas/anatomia & histologia , Polinização , Animais , Evolução Biológica , Flores/fisiologia
3.
AoB Plants ; 82016.
Artigo em Inglês | MEDLINE | ID: mdl-27179540

RESUMO

Our understanding of processes underlying plant recruitment emerges from species and habitats that are widely distributed at regional and global scales. However, the applicability of dispersal-recruitment models and the role of dispersal limitation versus microsite limitation have not been examined for specialized habitats. In patchy, freshwater Myristica swamp forests (Western Ghats, India), we examine the roles of primary seed dispersal, secondary seed removal and microsite suitability for the establishment of a swamp specialist tree, Myristica fatua We estimated primary seed shadows, performed secondary removal experiments and enumerated recruits in swamp sites. Steady-state fruiting was observed with the extended production (>7 months) of small numbers of fruits. Frugivores dropped most of the large and heavy seeds under parent crowns, while a few seeds were transported over short distances by hornbills. Seed placement experiments indicated that removal, germination and establishment were similar within swamp microsites, while seeds failed to survive in matrix habitats surrounding the swamp. Crabs, which were major secondary removers of M. fatua, did not alter the initial seed dispersal patterns substantially, which led to the retention of seeds within the swamp. Distribution of saplings and adults from previous seasons also suggest that dispersal-recruitment dynamics in the swamp specialist M. fatua did not strictly follow predictions of Janzen-Connell model while abiotic effects were significant. Large seeds, steady-state fruiting and small crop sizes may be significant selective forces facilitating escape from density and distance-dependent effects in space and time in specialist plant species such as M. fatua.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...