Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 21(11): 1721-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24971483

RESUMO

Hepatocellular carcinoma (HCC) usually develops in the context of chronic hepatitis triggered by viruses or toxic substances causing hepatocyte death, inflammation and compensatory proliferation of liver cells. Death receptors of the TNFR superfamily regulate cell death and inflammation and are implicated in liver disease and cancer. Liver parenchymal cell-specific ablation of NEMO/IKKγ, a subunit of the IκB kinase (IKK) complex that is essential for the activation of canonical NF-κB signalling, sensitized hepatocytes to apoptosis and caused the spontaneous development of chronic hepatitis and HCC in mice. Here we show that hepatitis and HCC development in NEMO(LPC-KO) mice is triggered by death receptor-independent FADD-mediated hepatocyte apoptosis. TNF deficiency in all cells or conditional LPC-specific ablation of TNFR1, Fas or TRAIL-R did not prevent hepatocyte apoptosis, hepatitis and HCC development in NEMO(LPC-KO) mice. To address potential functional redundancies between death receptors we generated and analysed NEMO(LPC-KO) mice with combined LPC-specific deficiency of TNFR1, Fas and TRAIL-R and found that also simultaneous lack of all three death receptors did not prevent hepatocyte apoptosis, chronic hepatitis and HCC development. However, LPC-specific combined deficiency in TNFR1, Fas and TRAIL-R protected the NEMO-deficient liver from LPS-induced liver failure, showing that different mechanisms trigger spontaneous and LPS-induced hepatocyte apoptosis in NEMO(LPC-KO) mice. In addition, NK cell depletion did not prevent liver damage and hepatitis. Moreover, NEMO(LPC-KO) mice crossed into a RAG-1-deficient genetic background-developed hepatitis and HCC. Collectively, these results show that the spontaneous development of hepatocyte apoptosis, chronic hepatitis and HCC in NEMO(LPC-KO) mice occurs independently of death receptor signalling, NK cells and B and T lymphocytes, arguing against an immunological trigger as the critical stimulus driving hepatocarcinogenesis in this model.


Assuntos
Apoptose/fisiologia , Carcinoma Hepatocelular/etiologia , Proteína de Domínio de Morte Associada a Fas/metabolismo , Hepatite/etiologia , Quinase I-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/etiologia , Receptores de Morte Celular/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Hepatite/imunologia , Hepatite/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo
2.
Int J Cancer ; 130(12): 2771-82, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21805474

RESUMO

Ursodeoxycholic acid (UDCA) attenuates colon carcinogenesis in humans and in animal models by an unknown mechanism. We investigated UDCA effects on normal intestinal epithelium in vivo and in vitro to identify the potential chemopreventive mechanism. Feeding of mice with 0.4% UDCA reduced cell proliferation to 50% and suppressed several potential proproliferatory genes including insulin receptor substrate 1 (Irs-1). A similar transcriptional response was observed in the rat intestinal cell line IEC-6 which was then used as an in vitro model. UDCA slowed down the proliferation of IEC-6 cells and induced sustained hyperphosphorylation of ERK1/ERK2 kinases which completely inhibited the proproliferatory effects of EGF and IGF-1. The hyperphosphorylation of ERK1 led to a transcriptional suppression of the Irs-1 gene. Both, the hyperphosphorylation of ERK as well as the suppression of Irs-1 were sufficient to inhibit proliferation of IEC-6 cells. ERK1/ERK2 inhibition in vitro or ERK1 elimination in vitro or in vivo abrogated the antiproliferatory effects of UDCA. We show that UDCA inhibits proliferation of nontransformed intestinal epithelial cells by inducing a sustained hyperphosphorylation of ERK1 kinase which slows down the cell cycle and reduces expression of Irs-1 protein. These data extend our understanding of the physiological and potentially chemopreventive effects of UDCA and identify new targets for chemoprevention.


Assuntos
Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Ácido Ursodesoxicólico/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Fator de Crescimento Epidérmico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Proteínas Substratos do Receptor de Insulina/biossíntese , Proteínas Substratos do Receptor de Insulina/genética , Fator de Crescimento Insulin-Like I/metabolismo , Mucosa Intestinal/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Ácido Ursodesoxicólico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...