Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986724

RESUMO

Aged individuals with spinal cord injury (SCI) are prevalent with increased mortality and worse outcomes. SCI can cause secondary brain neuroinflammation and neurodegeneration. However, the mechanisms contributing to SCI-induced brain dysfunction are poorly understood. Cell-to-cell signaling through extracellular vesicles (EVs) has emerged as a critical mediator of neuroinflammation, including at a distance through circulation. We have previously shown that SCI in young adult (YA) male mice leads to robust changes in plasma EV count and microRNAs (miRs) content. Here, our goal was to investigate the impact of old age on EVs and brain after SCI. At 24 h post-injury, there was no difference in particle count or size distribution between YA and aged mice. However, aged animals increased expression of EV marker CD63 with SCI. Using the Fireplex® miRs assay, Proteomics, and mass spectrometry-based Lipidomics, circulating EVs analysis identified distinct profiles of miRs, proteins, and lipid components in old and injury animals. In vitro, plasma EVs from aged SCI mice, at a lower concentration comparable to those of YA SCI mice, induced the secretion of pro-inflammatory cytokines and neuronal apoptosis. Systemic administration of plasma EVs from SCI animals was sufficient to impair general physical function and neurological function in intact animals, which is associated with pro-inflammatory changes in the brain. Furthermore, plasma EVs from young animals had rejuvenating effects on naïve aged mice. Collectively, these studies identify the critical changes in circulating EVs cargoes after SCI and in aged animals and support a potential EV-mediated mechanism for SCI-induced brain changes.

2.
Front Mol Biosci ; 11: 1354076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584702

RESUMO

Fibroblasts are versatile cells that play a major role in wound healing by synthesizing and remodeling the extracellular matrix (ECM). In cancers, fibroblasts play an expanded role in tumor progression and dissemination, immunosuppression, and metabolic support of cancer cells. In prostate cancer (PCa), fibroblasts have been shown to induce growth and increase metastatic potential. To further understand differences in the functions of human PCa associated fibroblasts (PCAFs) compared to normal prostate fibroblasts (PFs), we investigated the metabolic profile and ECM degradation characteristics of PFs and PCAFs using a magnetic resonance imaging and spectroscopy compatible intact cell perfusion assay. To further understand how PFs and PCAFs respond to hypoxic tumor microenvironments that are often observed in PCa, we characterized the effects of hypoxia on PF and PCAF metabolism, invasion and PD-L1 expression. We found that under normoxia, PCAFs displayed decreased ECM degradation compared to PFs. Under hypoxia, ECM degradation by PFs increased, whereas PCAFs exhibited decreased ECM degradation. Under both normoxia and hypoxia, PCAFs and PFs showed significantly different metabolic profiles. PD-L1 expression was intrinsically higher in PCAFs compared to PFs. Under hypoxia, PD-L1 expression increased in PCAFs but not in PFs. Our data suggest that PCAFs may not directly induce ECM degradation to assist in tumor dissemination, but may instead create an immune suppressive tumor microenvironment that further increases under hypoxic conditions. Our data identify the intrinsic metabolic, ECM degradation and PD-L1 expression differences between PCAFs and PFs under normoxia and hypoxia that may provide novel targets in PCa treatment.

3.
NMR Biomed ; : e5157, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589764

RESUMO

Cellular senescence is characterized by stable cell cycle arrest. Senescent cells exhibit a senescence-associated secretory phenotype that can promote tumor progression. The aim of our study was to identify specific nuclear magnetic resonance (NMR) spectroscopy-based markers of cancer cell senescence. For metabolic studies, we employed murine liver carcinoma Harvey Rat Sarcoma Virus (H-Ras) cells, in which reactivation of p53 expression induces senescence. Senescent and nonsenescent cell extracts were subjected to high-resolution proton (1H)-NMR spectroscopy-based metabolomics, and dynamic metabolic changes during senescence were analyzed using a magnetic resonance spectroscopy (MRS)-compatible cell perfusion system. Additionally, the ability of intact senescent cells to degrade the extracellular matrix (ECM) was quantified in the cell perfusion system. Analysis of senescent H-Ras cell extracts revealed elevated sn-glycero-3-phosphocholine, myoinositol, taurine, and creatine levels, with decreases in glycine, o-phosphocholine, threonine, and valine. These metabolic findings were accompanied by a greater degradation index of the ECM in senescent H-Ras cells than in control H-Ras cells. MRS studies with the cell perfusion system revealed elevated creatine levels in senescent cells on Day 4, confirming the 1H-NMR results. These senescence-associated changes in metabolism and ECM degradation strongly impact growth and redox metabolism and reveal potential MRS signals for detecting senescent cancer cells in vivo.

4.
Mol Cancer ; 22(1): 207, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102680

RESUMO

Immune checkpoint inhibitors have revolutionized cancer therapy, yet the efficacy of these treatments is often limited by the heterogeneous and hypoxic tumor microenvironment (TME) of solid tumors. In the TME, programmed death-ligand 1 (PD-L1) expression on cancer cells is mainly regulated by Interferon-gamma (IFN-γ), which induces T cell exhaustion and enables tumor immune evasion. In this study, we demonstrate that acidosis, a common characteristic of solid tumors, significantly increases IFN-γ-induced PD-L1 expression on aggressive cancer cells, thus promoting immune escape. Using preclinical models, we found that acidosis enhances the genomic expression and phosphorylation of signal transducer and activator of transcription 1 (STAT1), and the translation of STAT1 mRNA by eukaryotic initiation factor 4F (elF4F), resulting in an increased PD-L1 expression. We observed this effect in murine and human anti-PD-L1-responsive tumor cell lines, but not in anti-PD-L1-nonresponsive tumor cell lines. In vivo studies fully validated our in vitro findings and revealed that neutralizing the acidic extracellular tumor pH by sodium bicarbonate treatment suppresses IFN-γ-induced PD-L1 expression and promotes immune cell infiltration in responsive tumors and thus reduces tumor growth. However, this effect was not observed in anti-PD-L1-nonresponsive tumors. In vivo experiments in tumor-bearing IFN-γ-/- mice validated the dependency on immune cell-derived IFN-γ for acidosis-mediated cancer cell PD-L1 induction and tumor immune escape. Thus, acidosis and IFN-γ-induced elevation of PD-L1 expression on cancer cells represent a previously unknown immune escape mechanism that may serve as a novel biomarker for anti-PD-L1/PD-1 treatment response. These findings have important implications for the development of new strategies to enhance the efficacy of immunotherapy in cancer patients.


Assuntos
Interferon gama , Neoplasias , Humanos , Animais , Camundongos , Interferon gama/farmacologia , Interferon gama/metabolismo , Antígeno B7-H1 , Linhagem Celular Tumoral , Imunoterapia , Microambiente Tumoral , Neoplasias/genética
5.
Radiol Imaging Cancer ; 5(4): e220138, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37389448

RESUMO

Purpose To examine the association between hypoxia and programmed cell death ligand 1 (PD-L1) expression using bioluminescence imaging (BLI) and PET/MRI in a syngeneic mouse model of triple-negative breast cancer (TNBC). Materials and Methods PET/MRI and optical imaging were used to determine the role of hypoxia in altering PD-L1 expression using a syngeneic TNBC model engineered to express luciferase under hypoxia. Results Imaging showed a close spatial association between areas of hypoxia and increased PD-L1 expression in the syngeneic murine (4T1) tumor model. Mouse and human TNBC cells exposed to hypoxia exhibited a significant increase in PD-L1 expression, consistent with the in vivo imaging data. The role of hypoxia in increasing PD-L1 expression was further confirmed by using The Cancer Genome Atlas analyses of different human TNBCs. Conclusion These results have identified the potential role of hypoxia in contributing to PD-L1 heterogeneity in tumors by increasing cancer cell PD-L1 expression. Keywords: Hypoxia, PD-L1, Triple-Negative Breast Cancer, PET/MRI, Bioluminescence Imaging Supplemental material is available for this article. © RSNA, 2023.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/genética , Antígeno B7-H1/genética , Ligantes , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Hipóxia , Apoptose
6.
Cancer Biol Ther ; 24(1): 2184145, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37389973

RESUMO

Vascular endothelial growth factor (VEGF) plays key roles in angiogenesis, vasculogenesis, and wound healing. In cancers, including triple negative breast cancer (TNBC), VEGF has been associated with increased invasion and metastasis, processes that require cancer cells to traverse through the extracellular matrix (ECM) and establish angiogenesis at distant sites. To further understand the role of VEGF in modifying the ECM, we characterized VEGF-mediated changes in the ECM of tumors derived from TNBC MDA-MB-231 cells engineered to overexpress VEGF. We established that increased VEGF expression by these cells resulted in tumors with reduced collagen 1 (Col1) fibers, fibronectin, and hyaluronan. Molecular characterization of tumors identified an increase of MMP1, uPAR, and LOX, and a decrease of MMP2, and ADAMTS1. α-SMA, a marker of cancer associated fibroblasts (CAFs), increased, and FAP-α, a marker of a subset of CAFs associated with immune suppression, decreased with VEGF overexpression. Analysis of human data from The Cancer Genome Atlas Program confirmed mRNA differences for several molecules when comparing TNBC with high and low VEGF expression. We additionally characterized enzymatic changes induced by VEGF overexpression in three different cancer cell lines that clearly identified autocrine-mediated changes, specifically uPAR, in these enzymes. Unlike the increase of Col1 fibers and fibronectin mediated by VEGF during wound healing, in the TNBC model, VEGF significantly reduced key protein components of the ECM. These results further expand our understanding of the role of VEGF in cancer progression and identify potential ECM-related targets to disrupt this progression.


Assuntos
Neoplasias de Mama Triplo Negativas , Fator A de Crescimento do Endotélio Vascular , Humanos , Comunicação Autócrina , Matriz Extracelular , Fibronectinas/genética , Neoplasias de Mama Triplo Negativas/genética , Fator A de Crescimento do Endotélio Vascular/genética
7.
Res Sq ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131758

RESUMO

Approximately 20% of all spinal cord injuries (SCI) occur in persons aged 65 years or older. Longitudinal, population-based studies showed that SCI is a risk factor for dementia. However, little research has addressed the potential mechanisms of SCI-mediated neurological impairment in the elderly. We compared young adult and aged C57BL/6 male mice subjected to contusion SCI, using a battery of neurobehavioral tests. Locomotor function showed greater impairment in aged mice, which was correlated with reduced, spared spinal cord white matter and increased lesion volume. At 2 months post-injury, aged mice displayed worse performance in cognitive and depressive-like behavioral tests. Transcriptomic analysis identified activated microglia and dysregulated autophagy as the most significantly altered pathways by both age and injury. Flow cytometry demonstrated increased myeloid and lymphocyte infiltration at both the injury site and brain of aged mice. SCI in aged mice was associated with altered microglial function and dysregulated autophagy involving both microglia and brain neurons. Altered plasma extracellular vesicles (EVs) responses were found in aged mice after acute SCI. EV-microRNA cargos were also significantly altered by aging and injury, which were associated with neuroinflammation and autophagy dysfunction. In cultured microglia, astrocytes, and neurons, plasma EVs from aged SCI mice, at a lower concentration comparable to those of young adult SCI mice, induced the secretion of pro-inflammatory cytokines CXCL2 and IL-6, and increased caspase3 expression. Together, these findings suggest that age alters the EVs pro-inflammatory response to SCI, potentially contributing to worse neuropathological and functional outcomes.

8.
Front Oncol ; 13: 1068405, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937451

RESUMO

Fibroblast activation protein-α (FAP-α) is a transmembrane serine protease that is attracting significant interest as it is expressed by a subgroup of cancer-associated fibroblasts that play a role in immune suppression and cancer metastasis. FAP-α is also expressed by some cancer cells, such as melanoma, colorectal and breast cancer cells. Triple negative breast cancer (TNBC) is an aggressive cancer that urgently requires identification of novel targets for therapy. To expand our understanding of the functional roles of FAP-α in TNBC we engineered a human TNBC cell line, MDA-MB-231, to stably overexpress FAP-α and characterized changes in metabolism by 1H magnetic resonance spectroscopy, cell proliferation, migration characterized by wound healing, and invasion. FAP-α overexpression resulted in significant alterations in myoinositol, choline metabolites, creatine, and taurine, as well as a significant increase of migration and invasion, although proliferation remained unaltered. The increase of migration and invasion are consistent with the known activities of FAP-α as an exopeptidase and endopeptidase/gelatinase/collagenase in tissue remodeling and repair, and in cell migration. We additionally determined the effects of FAP-α overexpression on the human fibrosarcoma HT1080 cell line that showed increased migration, accompanied by limited changes in metabolism that identified the dependency of the metabolic changes on cell type. These metabolic data identify a previously unknown role of FAP-α in modifying cancer cell metabolism in the TNBC cell line studied here that may provide new insights into its functional roles in cancer progression.

9.
J Med Virol ; 95(2): e28568, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36756925

RESUMO

SARS-CoV-2, the causative agent of COVID-19 disease, has resulted in the death of millions worldwide since the beginning of the pandemic in December 2019. While much progress has been made to understand acute manifestations of SARS-CoV-2 infection, less is known about post-acute sequelae of COVID-19 (PASC). We investigated the levels of both Spike protein (Spike) and viral RNA circulating in patients hospitalized with acute COVID-19 and in patients with and without PASC. We found that Spike and viral RNA were more likely to be present in patients with PASC. Among these patients, 30% were positive for both Spike and viral RNA; whereas, none of the individuals without PASC were positive for both. The levels of Spike and/or viral RNA in the PASC+ve patients were found to be increased or remained the same as in the acute phase; whereas, in the PASC-ve group, these viral components decreased or were totally absent. Additionally, this is the first report to show that part of the circulating Spike is linked to extracellular vesicles without any presence of viral RNA in these vesicles. In conclusion, our findings suggest that Spike and/or viral RNA fragments persist in the recovered COVID-19 patients with PASC up to 1 year or longer after acute SARS-CoV-2 infection.


Assuntos
COVID-19 , Vesículas Extracelulares , Humanos , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Progressão da Doença , RNA Viral
10.
Cancer Sci ; 114(1): 236-246, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36169301

RESUMO

Photoimmunotherapy (PIT), carried out using an Ab conjugated to the near infrared dye IRDye700DX, is achieving significant success in target-specific elimination of cells. Fibroblast activation protein alpha (FAP-α) is an important target in cancer because of its expression by cancer-associated fibroblasts (CAFs) as well as by some cancer cells. Cancer-associated fibroblasts that express FAP-α have protumorigenic and immune suppressive functions. Using immunohistochemistry of human breast cancer tissue microarrays, we identified an increase of FAP-α+  CAFs in invasive breast cancer tissue compared to adjacent normal tissue. We found FAP-α expression increased in fibroblasts cocultured with cancer cells. In proof-of-principle studies, we engineered human FAP-α overexpressing MDA-MB-231 and HT-1080 cancer cells and murine FAP-α overexpressing NIH-3T3 fibroblasts to evaluate several anti-FAP-α Abs and selected AF3715 based on its high binding affinity with both human and mouse FAP-α. After conjugation of AF3715 with the phthalocyanine dye IR700, the resultant Ab conjugate, FAP-α-IR700, was evaluated in cells and tumors for its specificity and effectiveness in eliminating FAP-α expressing cell populations with PIT. Fibroblast activation protein-α-IR700-PIT resulted in effective FAP-α-specific cell killing in the engineered cancer cells and in two patient-derived CAFs in a dose-dependent manner. Following an intravenous injection, FAP-α-IR700 retention was three-fold higher than IgG-IR700 in FAP-α overexpressing tumors, and two-fold higher compared to WT tumors. Fibroblast activation protein-α-IR700-PIT resulted in significant growth inhibition of tumors derived from FAP-α overexpressing human cancer cells. A reduction of endogenous FAP-α+ murine CAFs was identified at 7 days after FAP-α-IR700-PIT. Fibroblast activation protein-α-targeted near infrared PIT presents a promising strategy to eliminate FAP-α+ CAFs.


Assuntos
Neoplasias da Mama , Fototerapia , Animais , Humanos , Camundongos , Feminino , Fototerapia/métodos , Endopeptidases/genética , Proteínas de Membrana/genética , Imunoterapia/métodos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
11.
Nanoscale ; 14(38): 14014-14022, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36093754

RESUMO

Small interfering RNA (siRNA) is ideal for gene silencing through a sequence-specific RNA interference process. The redundancy and complexity of molecular pathways in cancer create a need for multiplexed targeting that can be achieved with multiplexed siRNA delivery. Here, we delivered multiplexed siRNA with a PSMA-targeted biocompatible dextran nanocarrier to downregulate CD46 and PD-L1 in PSMA expressing prostate cancer cells. The selected gene targets, PD-L1 and CD46, play important roles in the escape of cancer cells from immune surveillance. PSMA, abundantly expressed by prostate cancer cells, allowed the prostate cancer-specific delivery of the nanocarrier. The nanocarrier was modified with acid cleavable acetal bonds for a rapid release of siRNA. Cell imaging and flow cytometry studies confirmed the PSMA-specific delivery of CD46 and PD-L1 siRNA to high PSMA expressing PC-3 PIP cells. Immunoblot, qRT-PCR and flow cytometry methods confirmed the downregulation of CD46 and PD-L1 following treatment with multiplexed siRNA.


Assuntos
Antígeno B7-H1 , Neoplasias da Próstata , Acetais , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Dextranos , Humanos , Masculino , Neoplasias da Próstata/metabolismo , RNA de Cadeia Dupla , RNA Interferente Pequeno/química
12.
Pharmaceutics ; 14(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35745832

RESUMO

The availability of nanoparticles (NPs) to deliver small interfering RNA (siRNA) has significantly expanded the specificity and range of 'druggable' targets for precision medicine in cancer. This is especially important for cancers such as triple negative breast cancer (TNBC) for which there are no targeted treatments. Our purpose here was to understand the role of tumor vasculature and vascular endothelial growth factor (VEGF) overexpression in a TNBC xenograft in improving the delivery and function of siRNA NPs using in vivo as well as ex vivo imaging. We used triple negative MDA-MB-231 human breast cancer xenografts derived from cells engineered to overexpress VEGF to understand the role of VEGF and vascularization in NP delivery and function. We used polyethylene glycol (PEG) conjugated polyethylenimine (PEI) NPs to deliver siRNA that downregulates choline kinase alpha (Chkα), an enzyme that is associated with malignant transformation and tumor progression. Because Chkα converts choline to phosphocholine, effective delivery of Chkα siRNA NPs resulted in functional changes of a significant decrease in phosphocholine and total choline that was detected with 1H magnetic resonance spectroscopy (MRS). We observed a significant increase in NP delivery and a significant decrease in Chkα and phosphocholine in VEGF overexpressing xenografts. Our results demonstrated the importance of tumor vascularization in achieving effective siRNA delivery and downregulation of the target gene Chkα and its function.

13.
Cancers (Basel) ; 14(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35158887

RESUMO

(1) Background: Despite advances in surgical approaches and drug development, ovarian cancer is still a leading cause of death from gynecological malignancies. Patients diagnosed with late-stage disease are treated with aggressive surgical resection and chemotherapy, but recurrence with resistant disease is often observed following treatment. There is a critical need for effective therapy for late-stage ovarian cancer. Photoimmunotherapy (PIT), using an antibody conjugated to a near infrared (NIR) dye, constitutes an effective theranostic strategy to detect and selectively eliminate targeted cell populations. (2) Methods: Here, we are targeting program death ligand 1 (PD-L1) using NIR-PIT in a syngeneic mouse model of ovarian cancer. PD-L1 PIT-mediated cytotoxicity was quantified in RAW264.7 macrophages and ID8-Defb29-VEGF cells in culture, and in vivo with orthotopic ID8-Defb29-VEGF tumors. (3) Results: Treatment efficacy was observed both in vitro and in vivo. (4) Conclusions: Our data highlight the need for further investigations to assess the potential of using NIR-PIT for ovarian cancer therapy to improve the treatment outcome of ovarian cancer.

14.
J Extracell Vesicles ; 10(9): e12117, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34262673

RESUMO

Coronavirus disease-2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has lead to a global pandemic with a rising toll in infections and deaths. Better understanding of its pathogenesis will greatly improve the outcomes and treatment of affected patients. Here we compared the inflammatory and cardiovascular disease-related protein cargo of circulating large and small extracellular vesicles (EVs) from 84 hospitalized patients infected with SARS-CoV-2 with different stages of disease severity. Our findings reveal significant enrichment of proinflammatory, procoagulation, immunoregulatory and tissue-remodelling protein signatures in EVs, which remarkably distinguished symptomatic COVID-19 patients from uninfected controls with matched comorbidities and delineated those with moderate disease from those who were critically ill. Specifically, EN-RAGE, followed by TF and IL-18R1, showed the strongest correlation with disease severity and length of hospitalization. Importantly, EVs from COVID-19 patients induced apoptosis of pulmonary microvascular endothelial cells in the order of disease severity. In conclusion, our findings support a role for EVs in the pathogenesis of COVID-19 disease and underpin the development of EV-based approaches to predicting disease severity, determining need for patient hospitalization and identifying new therapeutic targets.


Assuntos
COVID-19/patologia , COVID-19/fisiopatologia , Adulto , Apoptose , Células Endoteliais/patologia , Vesículas Extracelulares/química , Vesículas Extracelulares/patologia , Feminino , Humanos , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Plasma/química , Plasma/citologia , Proteína S100A12/análise , Índice de Gravidade de Doença , Adulto Jovem
15.
Am J Respir Cell Mol Biol ; 65(4): 413-429, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34014809

RESUMO

Extracellular vesicles (EVs) have emerged as important mediators in cell-cell communication; however, their relevance in pulmonary hypertension (PH) secondary to human immunodeficiency virus (HIV) infection is yet to be explored. Considering that circulating monocytes are the source of the increased number of perivascular macrophages surrounding the remodeled vessels in PH, this study aimed to identify the role of circulating small EVs and EVs released by HIV-infected human monocyte-derived macrophages in the development of PH. We report significantly higher numbers of plasma-derived EVs carrying higher levels of TGF-ß1 (transforming growth factor-ß1) in HIV-positive individuals with PH compared with individuals without PH. Importantly, levels of these TGF-ß1-loaded, plasma-derived EVs correlated with pulmonary arterial systolic pressures and CD4 counts but did not correlate with the Dl CO or viral load. Correspondingly, enhanced TGF-ß1-dependent pulmonary endothelial injury and smooth muscle hyperplasia were observed. HIV-1 infection of monocyte-derived macrophages in the presence of cocaine resulted in an increased number of TGF-ß1-high EVs, and intravenous injection of these EVs in rats led to increased right ventricle systolic pressure accompanied by myocardial injury and increased levels of serum ET-1 (endothelin-1), TNF-α, and cardiac troponin-I. Conversely, pretreatment of rats with TGF-ß receptor 1 inhibitor prevented these EV-mediated changes. Findings define the ability of macrophage-derived small EVs to cause pulmonary vascular modeling and PH via modulation of TGF-ß signaling and suggest clinical implications of circulating TGF-ß-high EVs as a potential biomarker of HIV-associated PH.


Assuntos
Infecções por HIV/complicações , HIV/patogenicidade , Fator de Crescimento Transformador beta1/metabolismo , Animais , Vesículas Extracelulares/virologia , Humanos , Hipertensão Pulmonar/virologia , Macrófagos/virologia , Masculino , Monócitos/virologia , Hipertensão Arterial Pulmonar/virologia , Ratos Endogâmicos F344 , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Remodelação Vascular/fisiologia
16.
Cancer Metab ; 9(1): 10, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608051

RESUMO

BACKGROUND: Harnessing the power of the immune system by using immune checkpoint inhibitors has resulted in some of the most exciting advances in cancer treatment. The full potential of this approach has, however, not been fully realized for treating many cancers such as pancreatic and breast cancer. Cancer metabolism influences many aspects of cancer progression including immune surveillance. An expanded understanding of how cancer metabolism can directly impact immune checkpoints may allow further optimization of immunotherapy. We therefore investigated, for the first time, the relationship between the overexpression of choline kinase-α (Chk-α), an enzyme observed in most cancers, and the expression of the immune checkpoint PD-L1. METHODS: We used small interfering RNA to downregulate Chk-α, PD-L1, or both in two triple-negative human breast cancer cell lines (MDA-MB-231 and SUM-149) and two human pancreatic ductal adenocarcinoma cell lines (Pa09C and Pa20C). The effects of the downregulation were studied at the genomic, proteomic, and metabolomic levels. The findings were compared with the results obtained by the analysis of public data from The Cancer Genome Atlas Program. RESULTS: We identified an inverse dependence between Chk-α and PD-L1 at the genomic, proteomic, and metabolomic levels. We also found that prostaglandin-endoperoxide synthase 2 (COX-2) and transforming growth factor beta (TGF-ß) play an important role in this relationship. We independently confirmed this relationship in human cancers by analyzing data from The Cancer Genome Atlas Program. CONCLUSIONS: Our data identified previously unknown roles of PD-L1 in cancer cell metabolic reprogramming, and revealed the immunosuppressive increased PD-L1 effect of Chk-α downregulation. These data suggest that PD-L1 regulation of metabolism may be mediated through Chk-α, COX-2, and TGF-ß. The observations provide new insights that can be applied to the rational design of combinatorial therapies targeting immune checkpoints and cancer metabolism.

17.
Neoplasia ; 22(12): 679-688, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33142234

RESUMO

Hypoxia is frequently observed in human prostate cancer, and is associated with chemoresistance, radioresistance, metastasis, and castrate-resistance. Our purpose in these studies was to perform hypoxia theranostics by combining in vivo hypoxia imaging and hypoxic cancer cell targeting in a human prostate cancer xenograft. This was achieved by engineering PC3 human prostate cancer cells to express luciferase as well as a prodrug enzyme, yeast cytosine deaminase, under control of hypoxic response elements (HREs). Cancer cells display an adaptive response to hypoxia through the activation of several genes mediated by the binding of hypoxia inducible factors (HIFs) to HRE in the promoter region of target gene that results in their increased transcription. HIFs promote key steps in tumorigenesis, including angiogenesis, metabolism, proliferation, metastasis, and differentiation. HRE-driven luciferase expression allowed us to detect hypoxia in vivo to time the administration of the nontoxic prodrug 5-fluorocytosine that was converted by yeast cytosine deaminase, expressed under HRE regulation, to the chemotherapy agent 5-fluorouracil to target hypoxic cells. Conversion of 5-fluorocytosine to 5-fluorouracil was detected in vivo by 19F magnetic resonance spectroscopy. Morphological and immunohistochemical staining and molecular analyses were performed to characterize tumor microenvironment changes in cancer-associated fibroblasts, cell viability, collagen 1 fiber patterns, and HIF-1α. These studies expand our understanding of the effects of eliminating hypoxic cancer cells on the tumor microenvironment and in reducing stromal cell populations such as cancer-associated fibroblasts.


Assuntos
Hipóxia/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Microambiente Tumoral , Animais , Biomarcadores , Hipóxia Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Genes Reporter , Humanos , Hipóxia/genética , Hipóxia/terapia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/terapia , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Cachexia Sarcopenia Muscle ; 11(6): 1487-1500, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33006443

RESUMO

BACKGROUND: Cachexia is a major cause of morbidity in pancreatic ductal adenocarcinoma (PDAC) patients. Our purpose was to understand the impact of PDAC-induced cachexia on brain metabolism in PDAC xenograft studies, to gain new insights into the causes of cachexia-induced morbidity. Changes in mouse and human plasma metabolites were characterized to identify underlying causes of brain metabolic changes. METHODS: We quantified metabolites, detected with high-resolution 1 H magnetic resonance spectroscopy, in the brain and plasma of normal mice (n = 10) and mice bearing cachexia (n = 10) or non-cachexia (n = 9) inducing PDAC xenografts as well as in human plasma obtained from normal individuals (n = 24) and from individuals with benign pancreatic disease (n = 20) and PDAC (n = 20). Statistical significance was defined as a P value ≤0.05. RESULTS: The brain metabolic signature of cachexia-inducing PDAC was characterized by a significant depletion of choline of -27% and -21% as well as increases of glutamine of 13% and 9% and formate of 21% and 14%, relative to normal controls and non-cachectic tumour-bearing mice, respectively. Good to moderate correlations with percent weight change were found for choline (r = 0.70), glutamine (r = -0.58), and formate (r = -0.43). Significant choline depletion of -38% and -30%, relative to normal controls and non-cachectic tumour-bearing mice, respectively, detected in the plasma of cachectic mice likely contributed to decreased brain choline in cachectic mice. Similarly, relative to normal controls and patients with benign disease, choline levels in human plasma samples of PDAC patients were significantly lower by -12% and -20% respectively. A comparison of plasma metabolites from PDAC patients with and without weight loss identified significant changes in glutamine metabolism. CONCLUSIONS: Disturbances in metabolites of the choline/cholinergic and glutamine/glutamate/glutamatergic neurotransmitter pathways may contribute to morbidity. Metabolic normalization may provide strategies to reduce morbidity. The human plasma metabolite changes observed may lead to the development of companion diagnostic markers to detect PDAC and PDAC-induced cachexia.


Assuntos
Encéfalo , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Encéfalo/metabolismo , Caquexia/etiologia , Carcinoma Ductal Pancreático/complicações , Colinérgicos , Humanos , Camundongos , Neoplasias Pancreáticas/complicações
19.
medRxiv ; 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32909001

RESUMO

COVID-19 infection caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in a global pandemic with the number of deaths growing exponentially. Early evidence points to significant endothelial dysfunction, micro-thromboses, pro-inflammation as well as a dysregulated immune response in the pathogenesis of this disease. In this study, we analyzed the cargo of EVs isolated from the plasma of patients with COVID-19 for the identification of potential biomarkers of disease severity and to explore their role in disease pathogenesis. Plasma-derived EVs were isolated from 53 hospitalized patients with COVID infection and compared according to the severity of the disease. Analysis of inflammatory and cardiovascular protein cargo of large EVs revealed significantly differentially expressed proteins for each disease sub-group. Notably, members of the TNF superfamily and IL-6 family were up-regulated in patients on oxygen support with severe and moderate disease. EVs from the severe group were also enhanced with pro-thrombotic/endothelial injury factors (TF, t-PA, vWF) and proteins associated with cardiovascular pathology (MB, PRSS8, REN, HGF). Significantly higher levels of TF, CD163, and EN-RAGE were observed in EVs from severe patients when compared to patients with a moderate disease requiring supplemental O2. Importantly, we also observed increased caspase 3/7 activity and decreased cell survival in human pulmonary microvascular endothelial cells exposed to EVs from the plasma of patients with severe disease compared to healthy controls. In conclusion, our findings indicate alterations in pro-inflammatory, coagulopathy, and endothelial injury protein cargo in large EVs in response to SARS-CoV-2 infection that may be a causative agent in severe illness.

20.
Pulm Circ ; 10(1): 2045894019898376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32110385

RESUMO

Pulmonary arterial hypertension is a fatal disease associated with pulmonary vascular remodeling and right ventricular hypertrophy. Pre-clinical animal models that reproduce the human pulmonary arterial hypertension process and pharmacological response to available therapies are critical for future drug development. The most prevalent animal model reproducing many aspects of angioobliterative forms of pulmonary arterial hypertension is the rat Sugen/hypoxia model in which Sugen, a vascular endothelial growth factor receptor antagonist, primarily causes initiation of endothelial injury and later in the presence of hypoxia promotes proliferation of apoptosis-resistant endothelial cells. We previously demonstrated that exposure of human pulmonary microvascular endothelium to morphine and HIV-proteins results in initial apoptosis followed by increased proliferation. Here, we demonstrate that the double-hit of morphine and Sugen 5416 (Sugen-morphine) in rats leads to the development of pulmonary arterial hypertension with significant medial hypertrophy of pre-acinar pulmonary arteries along with neo-intimal thickening of intra-acinar vessels. In addition, the pulmonary smooth muscle and endothelial cells isolated from Sugen-morphine rats showed hyperproliferation and apoptotic resistance, respectively, in response to serum starvation. Our findings support that the dual hit model of Sugen 5416 and morphine provides another experimental strategy to induce significant pulmonary vascular remodeling and development of severe pulmonary arterial hypertension pathology in rats without exposure to hypoxia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...