Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570798

RESUMO

Rods and cones are the photoreceptor cells containing the visual pigment proteins that initiate visual phototransduction following the absorption of a photon. Photon absorption induces the photochemical transformation of a visual pigment, which results in the sequential formation of distinct photo-intermediate species on the femtosecond to millisecond timescales, whereupon a visual electrical signal is generated and transmitted to the brain. Time-resolved spectroscopic studies of the rod and cone photo-intermediaries enable the detailed understanding of initial events in vision, namely the key differences that underlie the functionally distinct scotopic (rod) and photopic (cone) visual systems. In this paper, we review our recent ultrafast (picoseconds to milliseconds) transient absorption studies of rod and cone visual pigments with a detailed comparison of the transient molecular spectra and kinetics of their respective photo-intermediaries. Key results include the characterization of the porphyropsin (carp fish rhodopsin) and human green-cone opsin photobleaching sequences, which show significant spectral and kinetic differences when compared against that of bovine rhodopsin. These results altogether reveal a rather strong interplay between the visual pigment structure and its corresponding photobleaching sequence, and relevant outstanding questions that will be further investigated through a forthcoming study of the human blue-cone visual pigment are discussed.


Assuntos
Células Fotorreceptoras Retinianas Cones , Rodopsina , Animais , Bovinos , Humanos , Rodopsina/química , Cinética , Células Fotorreceptoras Retinianas Cones/química , Células Fotorreceptoras Retinianas Cones/fisiologia , Visão Ocular
2.
Sci Rep ; 13(1): 8408, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225762

RESUMO

In this study, (NaYF4:Yb,Er) microparticles dispersed in water and ethanol, were used to generate 540 nm visible light from 980 nm infrared light by means of a nonlinear stepwise two-photon process. IR-reflecting mirrors placed on four sides of the cuvette that contained the microparticles increased the intensity of the upconverted 540 nm light by a factor of three. We also designed and constructed microparticle-coated lenses that can be used as eyeglasses, making it possible to see rather intense infrared light images that are converted to visible.

3.
Rev Sci Instrum ; 91(7): 074106, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752878

RESUMO

We have designed, constructed, and utilized a charge-coupled device system, integrated with a small Newtonian telescope, capable of long distance recording of bacterial fluorescence and synchronous spectra for the detection of bacteria, their component molecules, and other species. This newly developed optical system utilizes commercial monochrome cameras that we have used to detect various bacterial strains, such as Escherichia coli, and determine their concentrations. In addition, using this system, we were able to differentiate between live and dead bacteria after treatment with ultraviolet light or antibiotics.


Assuntos
Escherichia coli/isolamento & purificação , Robótica/instrumentação , Telescópios
4.
J Chem Phys ; 151(12): 124702, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575190

RESUMO

As a classic ferromagnetic material, nickel has been an important research candidate used to study dynamics and interactions of electron, spin, and lattice degrees of freedom. In this study, we specifically chose a thick, 150 nm ferromagnetic nickel (111) single crystal rather than 10-20 nm thin crystals that are typically used in ultrafast studies, and we revealed both the ultrafast heating within the skin depth and the heat transfer from the surface (skin) layer to the bulk of the crystal. The lattice deformation after femtosecond laser excitation was investigated by means of 8.04 keV subpicosecond x-ray pulses, generated from a table-top laser-plasma based source. The temperature evolution of the electron, spin, and lattice was determined using a three temperature model. In addition to coherent phonon oscillations, the blast force and sonic waves, induced by the hot electron temperature gradient, were also observed by monitoring the lattice contractions during the first couple of picoseconds after laser irradiation. This study further revealed the tens of picoseconds time required for heating the hundred nanometer bulk of the Ni (111) single crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...