Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 330: 118207, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636573

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Benign prostatic hyperplasia (BPH), characterized by prostate enlargement due to cell proliferation, is a common urinary disorder in men over 50, manifesting as lower urinary tract symptoms (LUTS). Currently, several therapeutic options are accessible for treating BPH, including medication therapy, surgery and watchful waiting. Conventional drugs such as finasteride and dutasteride are used as 5α-reductase inhibitors for the treatment of BPH. However long-term use of these drugs is restricted due to their unpleasant side effects. Despite the range of available medical therapies, the effective treatment against BPH is still inadequate. Certain therapeutic plants and their phytochemicals have the aforementioned goals and work by regulating this enzyme. AIM OF THE STUDY: This review aims to provide a comprehensive insight to advancements in diagnosis of BPH, modern treatment methods and the significance of ethnobotanically relevant medicinal plants as alternative therapeutics for managing BPH. MATERIAL AND METHODS: A thorough and systematic literature search was performed using electronic databases and search engines such as PubMed, Web of Science, NCBI and SciFinder till October 2023. Specific keywords such as "benign prostatic hyperplasia", "medicinal plants", "phytochemicals", "pharmacology", "synergy", "ethnobotany", "5-alpha reductase", "alpha blocker" and "toxicology". By include these keywords, a thorough investigation of pertinent papers was assured, and important data about the many facets of BPH could be retrieved. RESULTS: After conducting the above investigation, 104 herbal remedies were found to inhibit Phosphodiesterase-5 (PDE-5) inhibition, alpha-blockers, or 5α -reductase inhibition effects which are supported by in vitro, in vivo and clinical trial studies evidence. Of these, 89 plants have ethnobotanical significance as alpha-blockers, alpha-reductase inhibition, or PDE-5 inhibition, and the other fifteen plants were chosen based on their ability to reduce BPH risk factors. Several phytocompounds, including, rutaecarpine, vaccarin, rutin, kaempferol, ß-sitosterol, quercetin, dicaffeoylquinic acid, rutaevin, and phytosterol-F have been reported to be useful for the management of BPH. The use of combination therapy offers a strong approach to treating long-term conditions compare to single plant extract drugs. Furthermore, several botanical combinations such as lycopene and curcumin, pumpkin seed oil and saw palmetto oil, combinations of extracts from Funtumia africana (Benth.) Stapf and Abutilon mauritianum (Jacq.) Medik., and Hypselodelphys poggeana (K.Schum.) Milne-Redh. and Spermacoce radiata (DC.) Sieber ex Hiern are also supported through in vitro and in vivo studies for managing BPH through recuperation in patients with chronic long-term illnesses, as measured by the International Prostate Symptom Score. CONCLUSION: The review proposes and endorses careful utilization of conventional medications that may be investigated further to discover possible PDE-5, 5 alpha-reductase, an alpha-blocker inhibitor for managing BPH. Even though most conventional formulations, such as 5 alpha-reductase, are readily available, systemic assessment of the effectiveness and mechanism of action of the herbal constituents is still necessary to identify novel chemical moieties that can be further developed for maximum efficacy. However, there exist abundant botanicals and medicinal plants across several regions of Africa, Asia, and the Americas, which can be further studied and developed for utilization as a potential phytotherapeutic for the management of BPH.


Assuntos
Compostos Fitoquímicos , Plantas Medicinais , Hiperplasia Prostática , Hiperplasia Prostática/tratamento farmacológico , Humanos , Masculino , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/química , Animais , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Extratos Vegetais/farmacologia , Inibidores de 5-alfa Redutase/uso terapêutico , Inibidores de 5-alfa Redutase/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38607416

RESUMO

Globally, antibiotic resistance is a challenging issue in healthcare sector. The emergence of multiple drug-resistant bacteria has forced us to modify existing medicines and or formulate newer medicines that are effective and inexpensive. In this perspective, this study involves the formation of zinc oxide nanoparticles (ZnO NPs) by utilizing the Lawsonia inermis (Li) leaf extract. The prepared L. inermis leaf extract mediated ZnO NPs (Li-ZnO NPs) were bio-physically characterized. The antibacterial and radical scavenging effects of Li-ZnO NPs were evaluated. In addition, ZnO NPs were conjugated with standard antibiotic (ciprofloxacin) and its drug loading efficiency, drug release and antibacterial efficacy were tested and compared with non-drug loaded ZnO NPs. An absorbance peak at 340 nm was noted for Li-ZnO NPs. After conjugation with the drug, two absorbance peaks- one at 242 nm characteristic of ciprofloxacin and the other at 350 nm characteristics of ZnO NPs were observed. The crystallite size was 18.7 nm as determined by XRD. The antibacterial effect was higher on Gram-positive (S. aureus and S. pyogenes) than the Gram-negative pathogens (E. coli and K. pneumoniae). Inhibition of S. aureus and S. pyogenes biofilm at 100 µg mL-1were, respectively, 97.5 and 92.6%. H2O2 free radicals was inhibited to 90% compared to the standard ascorbic acid at 100 µg mL-1. After drug loading, the FTIR spectrum confirmed the existence of ciprofloxacin peaks at 965 cm-1 and Zn-O bond at 492 cm-1. The drug loading capacity of 15 nm sized ZnO NPs was higher (58, 75, 90 and 95% at 1, 2.5, 5 and 10% drug concentrations, respectively) compared to 20 nm. Similarly, the percentage of drug (ciprofloxacin) released from 15 nm ZnO NPs were increased to 90% at 10% drug-loaded samples, respectively. Also, the antibiotic loaded ZnO NPs had significant antibacterial effects against tested bacteria compared to Li-ZnO NPs and ciprofloxacin alone. This revealed that the antibiotic loaded ZnO NPs offer a sustainable route to treat multi-drug-resistant bacterial infections.

3.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675473

RESUMO

The present study focused on the mushroom Ganoderma, which has been used in Eastern countries for centuries as a food and medicinal source. Specifically, the fruiting bodies of Ganoderma applanatum from the Kerala Forest Research Institute in Thirussur, Kerala, India, were analyzed for their nutritional and medicinal properties. The methanolic extracts of G. applanatum were used to examine secondary metabolites and proximate profiles, revealing the presence of various phytochemicals such as terpenoids, phenolics, glycosides, alkaloids, flavonoids, and saponins. Further analysis revealed the presence of significant amounts of calcium, sodium, phosphorus, and manganese. The compounds were characterized using chromatographic analysis, FTIR, and GC-MS, which revealed potential therapeutic compounds with C-H and C-O bonds in the amide group, ß-glycosides, and C-C/C-O vibrations of phenolic substances. Mushroom extract at a concentration of 100 µg mL-1 exhibited potent antimicrobial activity against various pathogens. This study suggests that G. applanatum has a rich biochemical composition and pharmacological potential, making it a promising candidate for drug development and traditional medicine, and contributes valuable insights into its diverse therapeutic applications.

4.
Int J Biol Macromol ; 250: 126171, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558015

RESUMO

Naturally occurring biopolymers like exopolysaccharides (EPS) secreted by lactic acid bacteria (LAB) has gained significant attention as they are cost effective, renewable and safe. In order to prevent the rapid increase in antibiotic resistant bacteria, the EPS of LAB offers novel approach of targeting the antibiotic resistant pathogens by limiting their effects on environment. Accordingly, in this study, the production, purification, characterization and biological properties of exopolysaccharides from Lactococcus hircilactis strain CH4 and Lactobacillus delbrueckii strain GRIPUMSK were performed. The optimization of lactic acid bacterial strains for exopolysaccharide production was done by response surface methodology and changing the carbon sources in the growth media. The carbohydrate and protein of exopolysaccharide 1 were 79.7 % and 8.7 % respectively and exopolysaccharide 2 were 75.2 % and 9.3 % respectively. When compared with the commercial emulsifier sodium dodecyl sulfate, both the exopolysaccharides have shown good emulsifying activity. Both the exopolysaccharides were linear homo-polysaccharide as determined by Fourier transform infrared spectroscopy and Nuclear magnetic resonance spectra. Scanning electron microscopy showed that the exopolysaccharides were porous and capable of holding water. The exopolysaccharides were partially crystalline as confirmed by X-ray diffraction spectra. Exopolysaccharides from L. hircilactis and L. delbrueckii exhibited significant antimicrobial activity against H. pylori, S. flexneri, S. pyogenes, E. faecalis and C. albicans. Both the exopolysaccharides revealed significant 2,2-diphenyl-1-picrylhydrazyl and hydrogen peroxide scavenging ability with the IC50 value of 100 µg/ml and 80 µg/ml respectively. Exopolysaccharides from L. hircilactis and L. delbrueckii at 100 µg/ml showed significant anticancer activity on HT-29 cells with 58.4 % and 58.7 % respectively. These findings proved that exopolysaccharides from the two selected lactic acid bacterial strains could be explored as natural bioactive carbohydrate polymer for biomedical applications.

5.
Inorg Chem Commun ; 152: 110682, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37041990

RESUMO

Multidrug resistant (MDR) pathogens have become a major global health challenge and have severely threatened the health of society. Current conditions have become worse as a result of the COVID-19 pandemic, and infection rates in the future will rise. It is necessary to design, respond effectively, and take action to address these challenges by investigating new avenues. In this regard, the fabrication of metal NPs utilized by various methods, including green synthesis using mushroom, is highly versatile, cost-effective, eco-compatible, and superior. In contrast, biofabrication of metal NPs can be employed as a powerful weapon against MDR pathogens and have immense biomedical applications. In addition, the advancement in nanotechnology has made possible to modify the nanomaterials and enhance their activities. Metal NPs with biomolecules composite prevent the microbial adhesion and kills the microbial pathogens through biofilm formation. Bacteriocin is an excellent antimicrobial peptide that works well as an augmentation substance to boost the antimicrobial effects. As a result, we concentrate on the creation of new, eco-compatible mycosynthesized metal NPs with bacteriocin nanocomposite via electrostatic, covalent, or non-covalent bindings. The synergistic benefits of metal NPs with bacteriocin to combat MDR pathogens and COVID-19, as well as other biomedical applications, are discussed in this review. Moreover, the importance of the adverse outcome pathway (AOP) in risk analysis of manufactured metal nanocomposite nanomaterial and their future possibilities were also discussed.

6.
Int J Biol Macromol ; 220: 291-306, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981676

RESUMO

The current study aimed to screen bacteriocin producing LAB from different dairy products and evaluation of their biological properties. Initially, 12 (4-chess, 4-curd, and 4-yohurt) LAB species were isolated and only 4 isolates alone were selected based on their clear yellow halo zone around the colonies in the selective medium. The selected 4 isolates were identified based on their morphological and biochemical characteristics. Among them, the strain CH3 have showed better antimicrobial effects on selected human pathogens. The isolated strain CH3 were further identified as Lactococcus lactis strain CH3 (MZ636710) by SEM imaging and 16 s rRNA molecular sequencing. Bacteriocin was extracted from L. lactis strain CH3 and partially purified using 60 % ammonium sulphate and then completely purified by G-50 column chromatography. The purified bacteriocin showed a specific activity of 5859.37 AU/mg in 24.7 % of recovery and 10.9-fold purification. The molecular weight of bacteriocin was 3.5 kDa as observed in SDS-PAGE. The bacteriocin showed sensitivity to proteolytic enzymes and resistance to high temperature, wide range of pH, organic solvents and detergents. FT-IR spectral studies of bacteriocin detected the existence of OH/NH-stretching, CH, and COC and CO bonds. NMR spectrum showed one doublet and 4 various singlet peaks at different ppm, indicating the occurrence of six amino acids in the structure of purified bacteriocin. The purified bacteriocin have shown stronger antimicrobial and anti-biofilm activity against selected human pathogens at 100 µg/mL. SEM showed the evidence of structural deformation and loss of membrane integrity of bacterial cells treated with bacteriocin. Bacteriocin exhibited greater DPPH radical scavenging potential with an EC50 value of 12.5 µg/mL. Bacteriocin have not shown significant toxicity on normal human dermal fibroblast (NHDF) cells (83.2 % at 100 µg/ mL). Furthermore, in silico studies using molecular modeling and docking were performed to know the proteins involved in antimicrobial action. The results suggests that bacteriocin could be an alternative to combat AMR pathogens and more suitable for food and dairy industries to preserve food without contamination.


Assuntos
Bacteriocinas , Produtos Fermentados do Leite , Lactococcus lactis , Aminoácidos/metabolismo , Sulfato de Amônio/metabolismo , Antibacterianos/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Bacteriocinas/química , Detergentes , Humanos , Lactococcus lactis/metabolismo , Peptídeo Hidrolases/metabolismo , Solventes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...