Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 9(9): 2229-2234, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29649872

RESUMO

We use first-principles calculations to study the formation of Pt nanorafts and their oxygen reduction reaction (ORR) catalytic activity on Mo2C. Due to the high Pt binding energy on C atoms, Pt forms sheet-like structures on the Mo2C surface instead of agglomerating into particles. We find that the disordered Mo2C surface carbon arrangement limits the Pt sheet growth, leading to the formation of 4-6 atom Pt nanorafts. The O-O repulsion between the O atoms on the Mo2C and O adsorbate enhances the ORR activity by weakening the O adsorption energy. We find a significant change from the usual scaling of the energies of the intermediates in the ORR pathway and a strong interaction between the nanoraft and water that lead to a high activity of the Pt nanorafts. Fundamentally, our work demonstrates that the activity of metal catalysts can be strongly affected by manipulation of the atomic arrangement of the supporting carbide surface.

2.
Phys Chem Chem Phys ; 17(7): 4961-9, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25591500

RESUMO

Hydride transfer changes the charge structure of the reactant and thus, may induce reorientation/reorganization of solvent molecules. This solvent reorganization may in turn alter the energetics of the reaction. In the present work, we investigate the intramolecular hydride transfer by taking Lewis acid catalyzed glucose to fructose isomerization as an example. The C2-C1 hydride transfer is the rate limiting step in this reaction. Water and methanol are used as solvents and hydride transfer is simulated in the presence of explicit solvent molecules, treated quantum mechanically and at a finite temperature, using Car-Parrinello molecular dynamics (CPMD) and metadynamics. Activation free energy barrier for hydride transfer in methanol is found to be 50 kJ mol(-1) higher than that in water. In contrast, in density functional theory calculations, using an implicit solvent environment, the barriers are almost identical. Analysis of solvent dynamics and electronic polarization along the molecular dynamics trajectory and the results of CPMD-metadynamics simulation of the hydride transfer process in the absence of any solvent suggest that higher barrier in methanol is a result of non-equilibrium solvation. Methanol undergoes electronic polarization during the hydride transfer step. However, its molecular orientational relaxation is a much slower process that takes place after the hydride transfer, over an extended timescale. This results in non-equilibrium solvation. Water, on the other hand, does not undergo significant electronic polarization and thus, has to undergo minimal molecular reorientation to provide near equilibrium solvation to the transition state and an improved equilibrium solvation to the post hydride shift product state. Hence, the hydride transfer step is also observed to be exergonic in water and endergonic in methanol. The aforementioned explanation is juxtaposed to enzyme catalyzed charge transfer reactions, where the enhanced solvation of the transition and product states by enzymes, due to electrostatic interactions, reduces the activation free energy barrier and the free energy change of the reaction. Similarly, we suggest that, in the intramolecular hydride shift, improved solvation of the transition state and of the product state by water is achieved due to minimal polarization and reorientation, and (near) equilibrium solvation.


Assuntos
Biomassa , Frutose/química , Glucose/química , Ácidos de Lewis/química , Metanol/química , Água/química , Catálise , Simulação por Computador , Isomerismo , Modelos Químicos , Teoria Quântica , Solventes/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...