Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
J Sci Food Agric ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39001630

RESUMO

BACKGROUND: An increasing incidence of metabolic disorders emphasizes the need to explore natural treatments. Spirulina, a microalga with a rich nutrient profile, offers a promising solution for obesity, diabetes, and inflammation. This study provides a meticulous analysis of spirulina powder, evaluating its physicochemical attributes and technofunctional properties through the use of advanced analytical techniques. RESULTS: Spirulina powder demonstrated strong flowability, substantial water and oil absorption capacity, and moderate foaming characteristics. The ethanolic extract of spirulina was found to be a repository of phenolic (6.93 mg GAE/g) and flavonoid (7.17 mg QE/g) compounds, manifesting considerable antioxidant activity with a 58.49 g kg-1 inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. The extract also exhibited pronounced inhibitory effects on lipase and amylase enzymes, with inhibition percentages of 72.05 g kg-1 and 70.28 g kg-1, respectively, and displayed a glucose retention capacity of 1.28 mg dL-1 (68.52 g kg-1) in a dialysis membrane assay. These results suggest its efficacy in modulating obesity and glycemic control. The powder also showed a potent anti-inflammatory response by mitigating protein denaturation. CONCLUSION: Spirulina powder is a potent natural agent with multiple health benefits, meriting its incorporation into functional foods. It could be suitable for application in the food industry, offering a natural strategy to combat metabolic diseases. This research adds to the scientific literature on spirulina, paving the way for future research into its utilization. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
PLoS One ; 19(6): e0304810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38857267

RESUMO

This paper reports the results of gamma irradiation experiments and whole genome sequencing (WGS) performed on vegetative cells of two radiation resistant bacterial strains, Metabacillus halosaccharovorans (VITHBRA001) and Bacillus paralicheniformis (VITHBRA024) (D10 values 2.32 kGy and 1.42 kGy, respectively), inhabiting the top-ranking high background radiation area (HBRA) of Chavara-Neendakara placer deposit (Kerala, India). The present investigation has been carried out in the context that information on strategies of bacteria having mid-range resistance for gamma radiation is inadequate. WGS, annotation, COG and KEGG analyses and manual curation of genes helped us address the possible pathways involved in the major domains of radiation resistance, involving recombination repair, base excision repair, nucleotide excision repair and mismatch repair, and the antioxidant genes, which the candidate could activate to survive under ionizing radiation. Additionally, with the help of these data, we could compare the candidate strains with that of the extremely radiation resistant model bacterium Deinococccus radiodurans, so as to find the commonalities existing in their strategies of resistance on the one hand, and also the rationale behind the difference in D10, on the other. Genomic analysis of VITHBRA001 and VITHBRA024 has further helped us ascertain the difference in capability of radiation resistance between the two strains. Significantly, the genes such as uvsE (NER), frnE (protein protection), ppk1 and ppx (non-enzymatic metabolite production) and those for carotenoid biosynthesis, are endogenous to VITHBRA001, but absent in VITHBRA024, which could explain the former's better radiation resistance. Further, this is the first-time study performed on any bacterial population inhabiting an HBRA. This study also brings forward the two species whose radiation resistance has not been reported thus far, and add to the knowledge on radiation resistant capabilities of the phylum Firmicutes which are abundantly observed in extreme environment.


Assuntos
Raios gama , Genoma Bacteriano , Tolerância a Radiação , Tolerância a Radiação/genética , Radiação de Fundo , Sequenciamento Completo do Genoma , Índia , Bacillus/genética , Bacillus/efeitos da radiação , Bacillus/metabolismo , Reparo do DNA
3.
J Agric Food Chem ; 72(26): 15013-15026, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38907729

RESUMO

Soybean ß-conglycinin is a major allergen that adversely affects the nutritional properties of soybean. Soybean deficient in ß-conglycinin is associated with low allergenicity and high nutritional value. Long intergenic noncoding RNAs (lincRNAs) regulate gene expression and are considered important regulators of essential biological processes. Despite increasing knowledge of the functions of lincRNAs, relatively little is known about the effects of lincRNAs on the accumulation of soybean ß-conglycinin. The current study presents the identification of a lincRNA lincCG1 that was mapped to the intergenic noncoding region of the ß-conglycinin α-subunit locus. The full-length lincCG1 sequence was cloned and found to regulate the expression of soybean seed storage protein (SSP) genes via both cis- and trans-acting regulatory mechanisms. Loss-of-function lincCG1 mutations generated using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system led to the deficiency of the allergenic α'-, α-, and ß-subunits of soybean ß-conglycinin as well as higher content of proteins, sulfur-containing amino acids, and free arginine. The dominant null allele LincCG1, and consequently, the ß-conglycinin-deficient phenotype associated with the lincCG1-gene-edited line was stably inherited by the progenies in a Mendelian fashion. The dominant null allele LincCG1 may therefore be exploited for engineering/developing novel hypoallergenic soybean varieties. Furthermore, Cas9-free and ß-conglycinin-deficient homozygous mutant lines were obtained in the T1 generation. This study is the first to employ the CRISPR/Cas9 technology for editing a lincRNA gene associated with the soybean allergenic protein ß-conglycinin. Moreover, this study reveals that lincCG1 plays a crucial role in regulating the expression of the ß-conglycinin subunit gene cluster, besides highlighting the efficiency of employing the CRISPR/Cas9 system for modulating lincRNAs, and thereby regulating soybean seed components.


Assuntos
Antígenos de Plantas , Sistemas CRISPR-Cas , Edição de Genes , Globulinas , Glycine max , RNA Longo não Codificante , Proteínas de Armazenamento de Sementes , Proteínas de Soja , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/química , Globulinas/genética , Globulinas/metabolismo , Globulinas/química , Glycine max/genética , Glycine max/metabolismo , Antígenos de Plantas/genética , Antígenos de Plantas/química , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Proteínas de Soja/química , RNA Longo não Codificante/genética , Regulação da Expressão Gênica de Plantas , Sementes/genética , Sementes/metabolismo , Sementes/química
4.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891766

RESUMO

Despite the high quality of soybean protein, raw soybeans and soybean meal cannot be directly included in animal feed mixtures due to the presence of Kunitz (KTi) and Bowman-Birk protease inhibitors (BBis), which reduces animal productivity. Heat treatment can substantially inactivate trypsin and chymotrypsin inhibitors (BBis), but such treatment is energy-intensive, adds expense, and negatively impacts the quality of seed proteins. As an alternative approach, we have employed CRISPR/Cas9 gene editing to create mutations in BBi genes to drastically lower the protease inhibitor content in soybean seed. Agrobacterium-mediated transformation was used to generate several stable transgenic soybean events. These independent CRISPR/Cas9 events were examined in comparison to wild-type plants using Sanger sequencing, proteomic analysis, trypsin/chymotrypsin inhibitor activity assays, and qRT-PCR. Collectively, our results demonstrate the creation of an allelic series of loss-of-function mutations affecting the major BBi gene in soybean. Mutations in two of the highly expressed seed-specific BBi genes lead to substantial reductions in both trypsin and chymotrypsin inhibitor activities.


Assuntos
Edição de Genes , Glycine max , Inibidor da Tripsina de Soja de Bowman-Birk , Quimotripsina/metabolismo , Quimotripsina/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Glycine max/genética , Glycine max/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Sementes/genética , Sementes/metabolismo , Tripsina/metabolismo , Tripsina/genética , Tripsina/química , Inibidor da Tripsina de Soja de Bowman-Birk/metabolismo , Inibidor da Tripsina de Soja de Bowman-Birk/genética , Inibidores da Tripsina/metabolismo
5.
Heliyon ; 10(8): e29433, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644870

RESUMO

Nanoparticles have different shapes and sizes between the range of 1-100 nm, which show advantages for stabilizing compounds, higher carrier capacity, and lower costs. Metal nanoparticles such as copper, gold, silver, and zinc are favorable components for various applications due to their interesting properties. In the present study, nanoparticles were synthesized by reduction with flower extracts of Bauhinia variegate & Saussurea lappa that were used to stabilize the copper nanoparticles. Furthermore, the characterization of plants synthesized copper nanoparticles was carried out through UV-visible dynamic light scattering. Additionally, morphological characterization of nanoparticles was confirmed by scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed the elemental composition of copper nanoparticles. Powder X-ray diffraction was conducted for the analysis of crystallinity, purity, and crystal size of plant-synthesized copper nanoparticles. The average particle size was evaluated and exhibited the particle size at the peak of 8.721 nm and 98.03 nm for flower extracts of Bauhinia variegate & Saussurea lappa copper nanoparticles. The Fourier Transform Infrared spectrum was taken to scrutinize the various functional groups that were responsible for the reduction of the copper ions. The antimicrobial results against the bacterial strains with the positive test results of the zone of inhibition were for Bauhinia variegate (17 mm, 18 mm, 19 mm, and 18 mm) and Saussurea lappa (17 mm, 19 mm, 18 mm, and 18 mm) respectively for plants synthesized copper nanoparticles against the Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa. Lipase inhibition assay and Amylase inhibition assay with different concentrations (20 µg/mL to 100 µg/mL) for Bauhinia variegate & Saussurea lappa (12.34 %-59.67 % and 10.50 %-47.01 %) and (34.52 %-89.02 % and 22.34 %-56.45 %) confirmed the anti-obesity and anti-diabetic activities of plants extract synthesized copper nanoparticles.

6.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542415

RESUMO

The type III secretion system (T3SS) is a key factor for the symbiosis between rhizobia and legumes. In this study, we investigated the effect of calcium on the expression and secretion of T3SS effectors (T3Es) in Sinorhizobium fredii NGR234, a broad host range rhizobial strain. We performed RNA-Seq analysis of NGR234 grown in the presence of apigenin, calcium, and apigenin plus calcium and compared it with NGR234 grown in the absence of calcium and apigenin. Calcium treatment resulted in a differential expression of 65 genes, most of which are involved in the transport or metabolism of amino acids and carbohydrates. Calcium had a pronounced effect on the transcription of a gene (NGR_b22780) that encodes a putative transmembrane protein, exhibiting a 17-fold change when compared to NGR234 cells grown in the absence of calcium. Calcium upregulated the expression of several sugar transporters, permeases, aminotransferases, and oxidoreductases. Interestingly, calcium downregulated the expression of nodABC, genes that are required for the synthesis of nod factors. A gene encoding a putative outer membrane protein (OmpW) implicated in antibiotic resistance and membrane integrity was also repressed by calcium. We also observed that calcium reduced the production of nodulation outer proteins (T3Es), especially NopA, the main subunit of the T3SS pilus. Additionally, calcium mediated the cleavage of NopA into two smaller isoforms, which might affect the secretion of other T3Es and the symbiotic establishment. Our findings suggest that calcium regulates the T3SS at a post-transcriptional level and provides new insights into the role of calcium in rhizobia-legume interactions.


Assuntos
Fabaceae , Sinorhizobium fredii , Sinorhizobium fredii/metabolismo , Cálcio/metabolismo , Apigenina/metabolismo , Fabaceae/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Cálcio da Dieta/metabolismo , Simbiose/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
7.
Sci Rep ; 14(1): 3093, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326523

RESUMO

In this study, we have examined the feasibility of using elemental sulfur content of soybean seeds as a proxy for the overall sulfur amino acid content of soybean seeds. Earlier, we have identified by high throughput ionomic phenotyping several high and low sulfur containing soybean lines from the USDA Soybean Germplasm Collection. Here, we measured the cysteine and methionine content of select soybean lines by high-performance liquid chromatography. Our results demonstrate that those soybean lines which had high elemental sulfur content also had a higher cysteine and methionine content when compared to soybean lines with low elemental sulfur. SDS-PAGE and immunoblot analysis revealed that the accumulation of Bowman Birk protease inhibitor and lunasin in soybean seeds may only be marginally correlated with the elemental sulfur levels. However, we found a positive correlation between the levels of trypsin and chymotrypsin inhibitor activities and elemental sulfur and sulfur amino acid content of the seeds. Thus, elemental sulfur content and/or protease inhibitor activity measurement can be utilized as a rapid and cost-effective method to predict the overall sulfur amino acid content of soybean seeds. Our findings will benefit breeders in their endeavors to develop soybean cultivars with enhanced sulfur amino acid content.


Assuntos
Aminoácidos Sulfúricos , Inibidor da Tripsina de Soja de Bowman-Birk , Glycine max , Cisteína/metabolismo , Inibidor da Tripsina de Soja de Bowman-Birk/química , Análise Custo-Benefício , Aminoácidos Sulfúricos/metabolismo , Metionina/metabolismo , Sementes/metabolismo , Inibidores de Proteases/metabolismo
8.
J Agric Food Chem ; 71(30): 11587-11598, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466256

RESUMO

Identifying and developing ice recrystallization inhibitors from sustainable food proteins such as soy protein isolate (SPI) can lead to practical applications in both pharmaceutical and food industries. The objective of this study was to investigate the ice recrystallization inhibition (IRI) activity of SPI hydrolysates, and this was achieved by using an IRI activity-guided fractionation approach and relating IRI activity to interfacial molecular activity measured by vibrational sum frequency generation (VSFG). In addition, the impact of molecular weight (MW) and enzyme specificity was analyzed using three different proteases (Alcalase, trypsin, and pancreatin) and varying hydrolysis times. Using preparative chromatography, hydrolysates from each enzyme treatment were fractionated into five different MW fractions (F1-F5), which were then characterized by high-performance liquid chromatography (HPLC). All SPI hydrolysates had IRI activity, resulting in a 57-29% ice crystal diameter reduction when compared to native SPI. The F1 fraction (of 4-14 kDa) was most effective among all tested hydrolysates, while the lower MW peptide fractions lacked activity. One sample (SPI-ALC 20-F1) had a 52% reduction of ice crystal size at a lower concentration of 2% compared to the typical 4% used. SFG showed a difference in H-bonding and hydrophobic interactions of the molecules on the water/air interface, which may be linked to IRI activity. This study demonstrates for the first time the ability of SPI hydrolysates to inhibit ice crystal growth and the potential application of SFG to study molecular interaction at the interface that may help illustrate the mechanism of action.


Assuntos
Gelo , Proteínas de Soja , Proteínas de Soja/química , Hidrolisados de Proteína/química , Peptídeo Hidrolases/metabolismo , Endopeptidases
9.
Front Public Health ; 11: 1156782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325312

RESUMO

Background: COVID-19 was declared as a Public Health Emergency of International Concern on 30th January 2020. Compared to the general population, healthcare workers and their families have been identified to be at a higher risk of getting infected with COVID-19. Therefore, it is crucial to understand the risk factors responsible for the transmission of SARS-CoV-2 infection among health workers in different hospital settings and to describe the range of clinical presentations of SARS-CoV-2 infection among them. Methodology: A nested case-control study was conducted among healthcare workers who were involved in the care of COVID-19 cases for assessing the risk factors associated with it. To get a holistic perspective, the study was conducted in 19 different hospitals from across 7 states (Kerala, Tamil Nadu, Andhra Pradesh, Karnataka, Maharashtra, Gujarat, and Rajasthan) of India covering the major government and private hospitals that were actively involved in COVID-19 patient care. The study participants who were not vaccinated were enrolled using the incidence density sampling technique from December 2020 to December 2021. Results: A total of 973 health workers consisting of 345 cases and 628 controls were recruited for the study. The mean age of the participants was observed to be 31.17 ± 8.5 years, with 56.3% of them being females. On multivariate analysis, the factors that were found to be significantly associated with SARS-CoV-2 were age of more than 31 years (adjusted odds ratio [aOR] 1.407 [95% CI 1.53-1.880]; p = 0.021), male gender (aOR 1.342 [95% CI 1.019-1.768]; p = 0.036), practical mode of IPC training on personal protective equipment (aOR 1. 1.935 [95% CI 1.148-3.260]; p = 0.013), direct exposure to COVID-19 patient (aOR 1.413 [95% CI 1.006-1.985]; p = 0.046), presence of diabetes mellitus (aOR 2.895 [95% CI 1.079-7.770]; p = 0.035) and those received prophylactic treatment for COVID-19 in the last 14 days (aOR 1.866 [95% CI 0.201-2.901]; p = 0.006). Conclusion: The study was able to highlight the need for having a separate hospital infection control department that implements IPC programs regularly. The study also emphasizes the need for developing policies that address the occupational hazards faced by health workers.


Assuntos
COVID-19 , Feminino , Humanos , Masculino , Adulto Jovem , Adulto , COVID-19/epidemiologia , SARS-CoV-2 , Estudos de Casos e Controles , Índia/epidemiologia , Fatores de Risco , Pessoal de Saúde
10.
J Agric Food Chem ; 71(26): 9994-10003, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37343237

RESUMO

A total of 718 metabolites were identified in leaves and seeds of the soybean (Glycine max (L.) Merr., Fabaceae) fast neutron (FN) mutant 2012CM7F040p05ar154bMN15, which was previously shown to have 21 genes deleted and higher protein content in seeds as compared to wild-type. Among the identified metabolites, 164 were found only in seeds, 89 only in leaves, and 465 in both leaves and seeds. Metabolites that exhibited higher abundance in the mutant leaf than in the wild type include the flavonoids afromosin, biochanin A, dihydrodaidzein, and apigenin. Mutant leaves also exhibited a higher accumulation of glycitein-glucoside, dihydrokaempferol, and pipecolate. The seed-only metabolites that were found in higher abundance in the mutant compared to the wild type included 3-hydroxybenzoate, 3-aminoisobutyrate, coenzyme A, N-acetyl-ß-alanine, and 1-methylhistidine. Among several amino acids, the cysteine content increased in the mutant leaf and seed when compared to the wild type. We anticipate that the deletion of acetyl-CoA synthase created a negative feedback effect on carbon dynamics, resulting in increased amounts of cysteine and isoflavone-associated metabolites. Metabolic profiling provided new insight into the cascading effect of gene deletions that helps breeders to produce value-added nutritional seed traits.


Assuntos
Glycine max , Isoflavonas , Glycine max/química , Nêutrons Rápidos , Cisteína/metabolismo , Isoflavonas/metabolismo , Fenótipo , Sementes/química
11.
Mol Plant Pathol ; 24(6): 628-636, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36975024

RESUMO

Gene co-expression network analysis is an efficient systems biology approach for the discovery of novel gene functions and trait-associated gene modules. To identify clusters of functionally related genes involved in soybean nodule formation and development, we performed a weighted gene co-expression network analysis. Two nodule-specific modules (NSM-1 and NSM-2, containing 304 and 203 genes, respectively) were identified. The NSM-1 gene promoters were significantly enriched in cis-binding elements for ERF, MYB, and C2H2-type zinc transcription factors, whereas NSM-2 gene promoters were enriched in cis-binding elements for TCP, bZIP, and bHLH transcription factors, suggesting a role of these regulatory factors in the transcriptional activation of nodule co-expressed genes. The co-expressed gene modules included genes with potential novel roles in nodulation, including those involved in xylem development, transmembrane transport, the ethylene signalling pathway, cytoskeleton organization, cytokinesis and regulation of the cell cycle, regulation of meristem initiation and growth, transcriptional regulation, DNA methylation, and histone modifications. Functional analysis of two co-expressed genes using TILLING mutants provided novel insight into the involvement of unsaturated fatty acid biosynthesis and folate metabolism in nodule formation and development. The identified gene co-expression modules provide valuable resources for further functional genomics studies to dissect the genetic basis of nodule formation and development in soybean.


Assuntos
Redes Reguladoras de Genes , Glycine max , Glycine max/genética , Regulação da Expressão Gênica de Plantas/genética , Perfilação da Expressão Gênica , Fatores de Transcrição/genética
12.
Methods Enzymol ; 680: 195-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710011

RESUMO

Rapid and accurate measurement of trypsin inhibitor is critical for soy processors to assess the quality of soy meal. Currently, trypsin inhibitor activity is measured using the American Oil Chemists' Society (AOCS) and the American Association of Cereal Chemists International (AACCI) approved method. We have modified and improved the AACCI/AOCS approved method resulting in the elimination of several time-consuming steps and drastically reducing the assay volume. By employing our simplified procedure, we have measured trypsin inhibitor activity of several soy and soy products. A side-by side comparison of our simplified procedure with AOCS approved method revealed strikingly similar results indicating that several time-consuming and tedious steps associated with AACCI/AOCS approved methods can be eliminated without sacrificing the accuracy of the assay. Moreover, we demonstrate that our assay can also be carried out in 96-well microplates which will enable high-throughput screening of large number of soy meal samples.


Assuntos
Alimentos de Soja , Proteínas de Soja , Inibidores da Tripsina , Análise Custo-Benefício , Alimentos , Temperatura Alta , Glycine max , Inibidores da Tripsina/análise , Estados Unidos , Alimentos de Soja/análise
13.
Sci Rep ; 12(1): 17858, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284199

RESUMO

The development of new biopesticides to control the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is urgent due to resistance evolution to various control methods. We tested an air-dried non-live preparation of Chromobacterium species Panama (Csp_P), against multiple corn rootworm species, including Bt-resistant and -susceptible WCR strains, northern (NCR, D. barberi Smith & Lawrence), and southern corn rootworm (SCR, D. undecimpunctata howardi Barber), in diet toxicity assays. Our results documented that Csp_P was toxic to all three corn rootworms species based on lethal (LC50), effective (EC50), and molt inhibition concentration (MIC50). In general, toxicity of Csp_P was similar among all WCR strains and ~ 3-fold less toxic to NCR and SCR strains. Effective concentration (EC50) was also similar among WCR and SCR strains, and 5-7-fold higher in NCR strains. Molt inhibition (MIC50) was similar among all corn rootworm strains except NCR diapause strain that was 2.5-6-fold higher when compared to all other strains. There was no apparent cross-resistance between Csp_P and any of the currently available Bt proteins. Our results indicate that Csp_P formulation was effective at killing multiple corn rootworm strains including Bt-resistant WCR and could be developed as a potential new management tool for WCR control.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Bacillus thuringiensis/genética , Larva/fisiologia , Chromobacterium , Agentes de Controle Biológico/farmacologia , Agentes de Controle Biológico/metabolismo , Endotoxinas/metabolismo , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Proteínas de Bactérias/metabolismo , Besouros/fisiologia , Zea mays/genética
14.
Methods Enzymol ; 676: 325-345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36280356

RESUMO

The salt-soluble globulins, glycinins (11S globulin), and ß-conglycinins (7S globulin), are the most abundant seed proteins of soybean seeds. Together, these two groups of proteins account for 60-70% of total soybean seed proteins. Proteomic assessment of the less abundant soybean seed proteins using general isolation protocols is challenging due to the overwhelming abundance of storage proteins. Development of a simple, fast, and inexpensive method to remove most storage proteins from a seed extract will significantly enhance the study of the nonabundant proteins within seeds. We have developed two simple methods for the depletion of abundant seed proteins resulting in the enrichment of low abundance proteins from soybean seeds. Here, we provide a detailed procedure for the isolation, separation, identification, and quantification of low abundance seed proteins of soybean.


Assuntos
Globulinas , Glycine max , Proteômica/métodos , Globulinas/metabolismo , Sementes/metabolismo , Extratos Vegetais/metabolismo
15.
Food Chem X ; 13: 100253, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35498991

RESUMO

Adenanthera pavonina, an underutilized tropical tree, is being promoted as an alternative food source for meeting the nutritional needs of human and animals. In this study, we have shown that trypsin inhibitors as one of the predominant proteins in the seeds of A. pavonina. DE-52 column chromatography resulted in the identification of four peaks with trypsin inhibitor activity. SDS-PAGE and immunoblot analyses revealed DE-52 peaks A and B were enriched in 17 and 15 kDa proteins and these proteins cross-reacted against soybean trypsin inhibitor antibodies. Simulated gastric fluid digestion revealed that the 15-17 kDa proteins are resistant to pepsin digestion. Roasting the seeds lowered the trypsin inhibitor activity while boiling intact seeds elevated the enzyme activity. However, the trypsin inhibitor activity was completely abolished when the seeds were boiled without their seed coats. Immunohistochemical detection and confocal microscopy demonstrated that trypsin inhibitors were localized in the cell cytosol.

16.
Phytochemistry ; 200: 113214, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35469783

RESUMO

A fast neutron (FN) radiated mutant soybean (Glycine max (L.) Merr., Fabaceae) displaying large duplications exhibited an increase in total seed protein content. A tandem mass tag (TMT) based protein profiling of matured seeds resulted in the identification of 4338 proteins. Gene duplication resulted in a significant increase in several seed storage proteins and protease inhibitors. Among the storage proteins, basic 7 S globulin, glycinin G4, and beta-conglycinin showed higher abundance in matured FN mutant seeds in addition to protease inhibitors. A significantly higher abundance of L-ascorbate peroxidases, acid phosphatases, and iron storage proteins was also observed. A higher amount of albumin, sucrose synthase, iron storage, and ascorbate family proteins in the mutant seeds was observed at the mid-stage of seed filling. We anticipate that the duplicated genes might have a cascading effect on the genome constituents, thus, resulting in increased storage and iron-containing protein content in the mutant seeds.


Assuntos
Nêutrons Rápidos , Glycine max , Ferro/metabolismo , Inibidores de Proteases , Sementes/genética , Sementes/metabolismo , Glycine max/genética , Glycine max/metabolismo
17.
Int J Mol Sci ; 23(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35409024

RESUMO

In legumes, the seed storage proteins accumulate within specialized organelles called protein storage vacuoles (PSVs). In several plant species, PSVs are differentiated into subdomains that accumulate different kinds of proteins. Even though the existence of subdomains is common in cereals and legumes, it has not been reported in soybean PSVs. The two most abundant seed proteins of soybean, 7S and 11S globulins, have different temporal accumulation patterns and exhibit considerable solubility differences that could result in differential accretion of these proteins within the PSVs. Here, we employed confocal fluorescent microscopy to examine the presence or absence of subdomains within the soybean PSVs. Eosin-stained sections of FAA-fixed paraffin embedded soybean seeds, when viewed by confocal fluorescence microscopy, revealed the presence of intricate subdomains within the PSVs. However, fluorescence immunolabeling studies demonstrated that the 7S and 11S globulins were evenly distributed within the PSVs and failed to corroborate the existence of subdomains within the PSVs. Similarly, confocal scanning microscopy examination of free-hand, vibratome and cryostat sections also failed to demonstrate the existence of subdomains within PSVs. The subdomains, which were prominently seen in PSVs of FAA-fixed soybean seeds, were not observed when the seeds were fixed either in glutaraldehyde/paraformaldehyde or glutaraldehyde. Our studies demonstrate that the apparent subdomains observed in FAA-fixed seeds may be a fixation artifact.


Assuntos
Globulinas , Glycine max , Antígenos de Plantas/metabolismo , Cotilédone/metabolismo , Globulinas/metabolismo , Glutaral/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/metabolismo , Proteínas de Soja/metabolismo , Glycine max/metabolismo , Vacúolos/metabolismo
18.
Proteomics ; 22(7): e2100143, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34825757

RESUMO

Using high throughput tandem mass tag (TMT) based tagging technique, we identified 4172 proteins in three developmental stages: early, mid, and late seed filling. We mapped the identified proteins to metabolic pathways associated with seed filling. The elevated abundance of several kinases was observed from the early to mid-stages of seed filling, indicating that protein phosphorylation was a significant event during this period. The early to late seed filling stages were characterized by an increased abundance of proteins associated with the cell wall, oil, and vacuolar-related processes. Among the seed storage proteins, 7S (ß-subunit) and 11S (Gy3, Gy4, Gy5) steadily increased in abundance during early to late stages of seed filling, whereas 2S albumin exhibited a decrease in abundance during the same period. An increased abundance of proteases, senescence-associated proteins, and oil synthesis proteins was observed from the mid to late seed filling stages. The mid to late stages of seed filling was also characterized by a lower abundance of transferases, transporters, Kunitz family trypsin, and protease inhibitors. Two enzymes associated with methionine synthesis exhibited lower abundance from early to late stages. This study unveiled several essential enzymes/proteins related to amino acid and protein synthesis and their accumulation during seed development. All data can be accessed through this link: https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=38784ecbd0854bb3801afc0d89056f84. (Accession MSV000087577).


Assuntos
Glycine max , Proteômica , Aminoácidos/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Glycine max/metabolismo
19.
Food Chem ; 362: 130220, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34098437

RESUMO

The goal of our study was to design a simple and feasible method to obtain lunasin, a naturally-occurring bioactive peptide, from tofu whey wastewater. A combination of alcoholic precipitation of high-molecular weight proteins from the whey, isoelectric precipitation of lunasin enriched material, and purification via gel filtration chromatography was selected as the best approach using tofu whey prepared at the laboratory scale. This process was applied to tofu whey produced by a local tofu factory and 773 mg of 80% purity lunasin was obtained per kg of dry tofu whey. Significant reduction of nitric oxide, and pro-inflammatory cytokines TNF-α and IL-6 over lipopolysaccharide activated murine macrophages demonstrate its biological activity. Our three-step process is not only simpler and faster than the previously reported methods to obtain lunasin but provides a sustainable approach for the valorization of a waste product, promoting the better utilization of soybean nutrients and active compounds.


Assuntos
Alimentos de Soja , Proteínas de Soja/isolamento & purificação , Proteínas de Soja/farmacologia , Águas Residuárias/química , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Cromatografia em Gel , Citocinas/metabolismo , Indústria de Processamento de Alimentos/métodos , Lipopolissacarídeos/toxicidade , Camundongos , Óxido Nítrico/metabolismo , Células RAW 264.7 , Glycine max/química , Resíduos
20.
Plant Sci ; 308: 110912, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34034869

RESUMO

Soybean is the preferred protein source for both poultry and swine feed. However, this preferred status is being challenged due to competition from alternative feed ingredients. To overcome this, it becomes necessary for breeders to develop soybean cultivars that contain higher protein and better nutritional composition. In this study, we have developed experimental soybean lines that not only contain significantly higher amounts of protein but also improved sulfur amino acid content. This objective was achieved by crossing a O-acetylserine sulfhydrylase (OASS) overexpressing transgenic soybean line with elevated levels of sulfur amino acid content (CS) with a high protein Korean soybean cultivar (Lee 5). Introgression of high protein and overexpression of OASS was monitored in the experimental lines at each successive generation (F2-F6) by measuring protein content and OASS activity. The average protein content of transgenic CS and Lee 5 seeds were 34.8 % and 44.7 %, while in the experimental soybean lines the protein content ranged from 41.3 %-47.7 %, respectively. HPLC and inductively coupled plasma-mass spectrometry analyses revealed that all the experimental lines developed in this study contained significantly higher amounts of sulfur containing amino acids and elemental sulfur in the seeds. The sulfur amino acid (cysteine + methionine) content of the experimental lines ranged from 1.1 % to 1.26 % while the parents Lee 5 and CS had 0.79 % and 1.1 %, respectively. SDS-PAGE and western blot analysis demonstrated that the accumulation of Bowman-Birk protease inhibitor and lunasin, two sulfur amino acid rich peptides, were elevated in experimental soybean lines. High-resolution 2D-gel electrophoresis and Delta2D gel analysis validated that an overall increase in the different subunits of 7S ß-conglycinin and 11S glycinin were mainly responsible for the observed increase in the total amount of protein in experimental lines.


Assuntos
Aminoácidos Sulfúricos/análise , Glycine max/genética , Melhoramento Vegetal , Proteínas de Plantas/análise , Plantas Geneticamente Modificadas , Glycine max/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...