Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33830920

RESUMO

Two delay-and-sum beamformers for 3-D synthetic aperture imaging with row-column addressed arrays are presented. Both beamformers are software implementations for graphics processing unit (GPU) execution with dynamic apodizations and third-order polynomial subsample interpolation. The first beamformer was written in the MATLAB programming language and the second was written in C/C++ with the compute unified device architecture (CUDA) extensions by NVIDIA. Performance was measured as volume rate and sample throughput on three different GPUs: a 1050 Ti, a 1080 Ti, and a TITAN V. The beamformers were evaluated across 112 combinations of output geometry, depth range, transducer array size, number of virtual sources, floating-point precision, and Nyquist rate or in-phase/quadrature beamforming using analytic signals. Real-time imaging defined as more than 30 volumes per second was attained by the CUDA beamformer on the three GPUs for 13, 27, and 43 setups, respectively. The MATLAB beamformer did not attain real-time imaging for any setup. The median, single-precision sample throughput of the CUDA beamformer was 4.9, 20.8, and 33.5 Gsamples/s on the three GPUs, respectively. The throughput of CUDA beamformer was an order of magnitude higher than that of the MATLAB beamformer.

2.
IEEE Trans Neural Syst Rehabil Eng ; 28(8): 1750-1759, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32746304

RESUMO

The viability of electroencephalogram (EEG) based vocal imagery (VIm) and vocal intention (VInt) Brain-Computer Interface (BCI) systems has been investigated in this study. Four different types of experimental tasks related to humming has been designed and exploited here. They are: (i) non-task specific (NTS), (ii) motor task (MT), (iii) VIm task, and (iv) VInt task. EEG signals from seventeen participants for each of these tasks were recorded from 16 electrode locations on the scalp and its features were extracted and analysed using common spatial pattern (CSP) filter. These features were subsequently fed into a support vector machine (SVM) classifier for classification. This analysis aimed to perform a binary classification, predicting whether the subject was performing one task or the other. Results from an extensive analysis showed a mean classification accuracy of 88.9% for VIm task and 91.1% for VInt task. This study clearly shows that VIm can be classified with ease and is a viable paradigm to integrate in BCIs. Such systems are not only useful for people with speech problems, but in general for people who use BCI systems to help them out in their everyday life, giving them another dimension of system control.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Imaginação , Intenção , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...