Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 15(1): e202101705, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34510781

RESUMO

Polyurethane (PU) is a thermoset plastic that is found in everyday objects, such as mattresses and shoes, but also in more sophisticated materials, including windmills and airplanes, and as insulation materials in refrigerators and buildings. Because of extensive inter-cross linkages in PU, current recycling methods are somewhat lacking. In this work, the effective catalytic hydrogenation of PU materials is carried out by applying a catalyst based on the earth-abundant metal manganese, to give amine and polyol fractions, which represent the original monomeric composition. In particular, Mn-Ph MACHO is found to catalytically deconstruct flexible foam, molded foams, insulation, and end-of-life materials at 1 wt.% catalyst loading by applying a reaction temperature of 180 °C, 50 bar of H2 , and 0.9 wt.% of KOH in isopropyl alcohol. The protocol is showcased in the catalytic deconstruction of 2 g of mattress foam using only 0.13 wt.% catalyst, resulting in 90 % weight recovery and a turnover number of 905.


Assuntos
Manganês , Poliuretanos , Catálise , Morte , Humanos , Íons
2.
JACS Au ; 1(4): 517-524, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-34467313

RESUMO

Polyurethane (PU) is a highly valued polymer prepared from diisocyanates and polyols, and it is used in everyday products, such as shoe soles, mattresses, and insulation materials, but also for the construction of sophisticated parts of medical devices, wind turbine blades, aircrafts, and spacecrafts, to name a few. As PU is most commonly used as a thermoset polymer composed of cross-linked structures, its recycling is complicated and inefficient, leading to increasing PU waste accumulating every year. Catalytic hydrogenation represents an atom-efficient means for the deconstruction of polyurethanes, but so far the identification of an efficient catalyst for the disassembly of real-life and end-of-life PU samples has not been demonstrated. In this work, we reveal that a commercially available catalyst, Ir- iPrMACHO, under 30 bar H2 and 150-180 °C, is a general catalyst for the effective hydrogenation of the four cornerstones of PU: flexible solid, flexible foamed, rigid solid, and rigid foamed, leading to the isolation of aromatic amines and a polyol fraction. For the first time, a variety of commercial PU materials, including examples of foams, inline skating wheels, shoe soles, and insulation materials, has been deconstructed into the two fractions. Most desirable, our reaction conditions include the use of isopropyl alcohol as a representative of a green solvent. It is speculated that a partial glycolysis at the surface of the PU particles is taking place in this solvent and reaction temperatures in the presence of catalytic amounts of base. As such a more efficient hydrogenation of the solubilized PU fragments in isopropyl alcohol becomes possible. As the isolated anilines are precursors to the original isocyanate building blocks, and methods for their conversion are well-known, the work reported in this paper provides a realistic indication of a potential circular plastic economy solution for PU. Preliminary experiments were also undertaken applying Mn- iPrMACHO for the deconstruction of a commercial flexible PU foam. Although successful, more forcing conditions were required than those when applying Ir- iPrMACHO.

3.
Angew Chem Int Ed Engl ; 57(42): 13887-13891, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30178905

RESUMO

A protocol for the Au-promoted anti-Markovnikov hydrothiolation of olefins using ex situ generated methanethiol is reported. The use of S-methylisothiourea hemisulfate salt as a solid precursor for methanethiol generation ensures a safe and reliable deliverance of a stoichiometric amount of this thiol. The procedure was shown to work for a broad range of olefins providing the corresponding hydrothiolated adduct in good to excellent yields. Mechanistic evaluations suggest that thiyl radicals are generated and that gold acts as an efficient but stable radical initiator.

4.
Chem Sci ; 8(12): 8094-8105, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29568458

RESUMO

A protocol for the Pd-catalysed cyanation of aryl bromides using near stoichiometric and gaseous hydrogen cyanide is reported for the first time. A two-chamber reactor was adopted for the safe liberation of ex situ generated HCN in a closed environment, which proved highly efficient in the Ni-catalysed hydrocyanation as the test reaction. Subsequently, this setup was exploited for converting a range of aryl and heteroaryl bromides (28 examples) directly into the corresponding benzonitriles in high yields, without the need for cyanide salts. Cyanation was achieved employing the Pd(0) precatalyst, P(tBu)3-Pd-G3 and a weak base, potassium acetate, in a dioxane-water solvent mixture. The methodology was also suitable for the synthesis of 13C-labelled benzonitriles with ex situ generated 13C-hydrogen cyanide. Stoichiometric studies with the metal complexes were undertaken to delineate the mechanism for this catalytic transformation. Treatment of Pd(P(tBu)3)2 with H13CN in THF provided two Pd-hydride complexes, (P(tBu)3)2Pd(H)(13CN), and [(P(tBu)3)Pd(H)]2Pd(13CN)4, both of which were isolated and characterised by NMR spectroscopy and X-ray crystal structure analysis. When the same reaction was performed in a THF : water mixture in the presence of KOAc, only (P(tBu)3)2Pd(H)(13CN) was formed. Subjection of this cyano hydride metal complex with the oxidative addition complex (P(tBu)3)Pd(Ph)(Br) in a 1 : 1 ratio in THF led to a transmetallation step with the formation of (P(tBu)3)2Pd(H)(Br) and 13C-benzonitrile from a reductive elimination step. These experiments suggest the possibility of a catalytic cycle involving initially the formation of two Pd(ii)-species from the oxidative addition of L n Pd(0) into HCN and an aryl bromide followed by a transmetallation step to L n Pd(Ar)(CN) and L n Pd(H)(Br), which both reductively eliminate, the latter in the presence of KOAc, to generate the benzonitrile and L n Pd(0).

5.
J Org Chem ; 82(1): 143-156, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28001415

RESUMO

The monosaccharide N-acetyl-d-glucosamine (GlcNAc) is an abundant building block in naturally occurring oligosaccharides, but its incorporation by chemical glycosylation is challenging since direct reactions are low yielding. This issue, generally agreed upon to be caused by an intermediate 1,2-oxazoline, is often bypassed by introducing extra synthetic steps to avoid the presence of the NHAc functional group during glycosylation. The present paper describes new fundamental mechanistic insights into the inherent challenges of performing direct glycosylation with GlcNAc. These results show that controlling the balance of oxazoline formation and glycosylation is key to achieving acceptable chemical yields. By applying this line of reasoning to direct glycosylation with a traditional thioglycoside donor of GlcNAc, which otherwise affords poor glycosylation yields, one may obtain useful glycosylation results.

6.
J Org Chem ; 79(22): 11011-9, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25335115

RESUMO

Herein we report on the development of novel glycosylation methodology for the concise synthesis of naturally occurring glycoconjugate motifs containing N-acetylgalactosamine (GalNAc) from the cheaper and commercially available N-acetylglucosamine (GlcNAc). The stereoselective glycosylations proceed with catalytic amounts of a promoter and without the need for N-protection other than the biologically relevant N-acetyl group. Among the catalysts explored, both Bi(OTf)3 and Fe(OTf)3 were found to be highly active Lewis acids for this reaction. It was also found that other less reactive metal triflates such as those of Cu(II) and Yb(III) can be beneficial in glycosylation reactions on more demanding glycosyl acceptors. We have furthermore demonstrated that it is possible to control the anomeric stereoselectivity in the glycosylation via postglycosylation in situ anomerization to obtain good yields of α-galactosides. The present protocol was used to prepare important naturally occurring carbohydrate motifs, including a trisaccharide fragment of the naturally occurring marine sponge clarhamnoside.


Assuntos
Acetilgalactosamina/química , Galactosídeos/química , Ácidos de Lewis/química , Mesilatos/química , Metais/química , Catálise , Glicosilação , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...