Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474917

RESUMO

The ubiquity of sensors in smart-homes facilitates the support of independent living for older adults and enables cognitive assessment. Notably, there has been a growing interest in utilizing movement traces for identifying signs of cognitive impairment in recent years. In this study, we introduce an innovative approach to identify abnormal indoor movement patterns that may signal cognitive decline. This is achieved through the non-intrusive integration of smart-home sensors, including passive infrared sensors and sensors embedded in everyday objects. The methodology involves visualizing user locomotion traces and discerning interactions with objects on a floor plan representation of the smart-home, and employing different image descriptor features designed for image analysis tasks and synthetic minority oversampling techniques to enhance the methodology. This approach distinguishes itself by its flexibility in effortlessly incorporating additional features through sensor data. A comprehensive analysis, conducted with a substantial dataset obtained from a real smart-home, involving 99 seniors, including those with cognitive diseases, reveals the effectiveness of the proposed functional prototype of the system architecture. The results validate the system's efficacy in accurately discerning the cognitive status of seniors, achieving a macro-averaged F1-score of 72.22% for the two targeted categories: cognitively healthy and people with dementia. Furthermore, through experimental comparison, our system demonstrates superior performance compared with state-of-the-art methods.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Idoso , Disfunção Cognitiva/diagnóstico , Vida Independente , Cognição , Mineração de Dados
2.
Front Cardiovasc Med ; 10: 1285066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111893

RESUMO

Cardiovascular diseases (CVDs) are a leading cause of death worldwide, with hypertension emerging as a significant risk factor. Early detection and treatment of hypertension can significantly reduce the risk of developing CVDs and related complications. This work proposes a novel approach employing features extracted from the acceleration photoplethysmography (APG) waveform, alongside clinical parameters, to estimate different stages of hypertension. The current study used a publicly available dataset and a novel feature extraction algorithm to extract APG waveform features. Three distinct supervised machine learning algorithms were employed in the classification task, namely: Decision Tree (DT), Linear Discriminant Analysis (LDA), and Linear Support Vector Machine (LSVM). Results indicate that the DT model achieved exceptional training accuracy of 100% during cross-validation and maintained a high accuracy of 96.87% on the test dataset. The LDA model demonstrated competitive performance, yielding 85.02% accuracy during cross-validation and 84.37% on the test dataset. Meanwhile, the LSVM model exhibited robust accuracy, achieving 88.77% during cross-validation and 93.75% on the test dataset. These findings underscore the potential of APG analysis as a valuable tool for clinicians in estimating hypertension stages, supporting the need for early detection and intervention. This investigation not only advances hypertension risk assessment but also advocates for enhanced cardiovascular healthcare outcomes.

3.
Front Bioeng Biotechnol ; 11: 1199604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37378045

RESUMO

Photoplethysmography is a non-invasive technique used for measuring several vital signs and for the identification of individuals with an increased disease risk. Its principle of work is based on detecting changes in blood volume in the microvasculature of the skin through the absorption of light. The extraction of relevant features from the photoplethysmography signal for estimating certain physiological parameters is a challenging task, where various feature extraction methods have been proposed in the literature. In this work, we present PPGFeat, a novel MATLAB toolbox supporting the analysis of raw photoplethysmography waveform data. PPGFeat allows for the application of various preprocessing techniques, such as filtering, smoothing, and removal of baseline drift; the calculation of photoplethysmography derivatives; and the implementation of algorithms for detecting and highlighting photoplethysmography fiducial points. PPGFeat includes a graphical user interface allowing users to perform various operations on photoplethysmography signals and to identify, and if required also adjust, the fiducial points. Evaluating the PPGFeat's performance in identifying the fiducial points present in the publicly available PPG-BP dataset, resulted in an overall accuracy of 99% and 3038/3066 fiducial points were correctly identified. PPGFeat significantly reduces the risk of errors in identifying inaccurate fiducial points. Thereby, it is providing a valuable new resource for researchers for the analysis of photoplethysmography signals.

4.
Sensors (Basel) ; 23(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904965

RESUMO

Bladder monitoring, including urinary incontinence management and bladder urinary volume monitoring, is a vital part of urological care. Urinary incontinence is a common medical condition affecting the quality of life of more than 420 million people worldwide, and bladder urinary volume is an important indicator to evaluate the function and health of the bladder. Previous studies on non-invasive techniques for urinary incontinence management technology, bladder activity and bladder urine volume monitoring have been conducted. This scoping review outlines the prevalence of bladder monitoring with a focus on recent developments in smart incontinence care wearable devices and the latest technologies for non-invasive bladder urine volume monitoring using ultrasound, optical and electrical bioimpedance techniques. The results found are promising and their application will improve the well-being of the population suffering from neurogenic dysfunction of the bladder and the management of urinary incontinence. The latest research advances in bladder urinary volume monitoring and urinary incontinence management have significantly improved existing market products and solutions and will enable the development of more effective future solutions.


Assuntos
Líquidos Corporais , Incontinência Urinária , Dispositivos Eletrônicos Vestíveis , Humanos , Bexiga Urinária , Qualidade de Vida
5.
Sensors (Basel) ; 23(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850500

RESUMO

In-hospital falls are a serious threat to patient security and fall risk assessment (FRA) is important to identify high-risk patients. Although sensor-based FRA (SFRA) can provide objective FRA, its clinical use is very limited and research to identify meaningful SFRA methods is required. This study aimed to investigate whether examples of SFRA methods might be relevant for FRA at an orthopedic clinic. Situations where SFRA might assist FRA were identified in a focus group interview with clinical staff. Thereafter, SFRA methods were identified in a literature review of SFRA methods developed for older adults. These were screened for potential relevance in the previously identified situations. Ten SFRA methods were considered potentially relevant in the identified FRA situations. The ten SFRA methods were presented to staff at the orthopedic clinic, and they provided their views on the SFRA methods by filling out a questionnaire. Clinical staff saw that several SFRA tasks could be clinically relevant and feasible, but also identified time constraints as a major barrier for clinical use of SFRA. The study indicates that SFRA methods developed for community-dwelling older adults may be relevant also for hospital inpatients and that effectiveness and efficiency are important for clinical use of SFRA.


Assuntos
Hospitais , Vida Independente , Humanos , Idoso , Grupos Focais , Medição de Risco
6.
Sensors (Basel) ; 22(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35062531

RESUMO

This article reviews the use of wearable sensors for the monitoring of physical activity (PA) for different purposes, including assessment of gait and balance, prevention and/or detection of falls, recognition of various PAs, conduction and assessment of rehabilitation exercises and monitoring of neurological disease progression. The article provides in-depth information on the retrieved articles and discusses study shortcomings related to demographic factors, i.e., age, gender, healthy participants vs patients, and study conditions. It is well known that motion patterns change with age and the onset of illnesses, and that the risk of falling increases with age. Yet, studies including older persons are rare. Gender distribution was not even provided in several studies, and others included only, or a majority of, men. Another shortcoming is that none of the studies were conducted in real-life conditions. Hence, there is still important work to be done in order to increase the usefulness of wearable sensors in these areas. The article highlights flaws in how studies based on previously collected datasets report on study samples and the data collected, which makes the validity and generalizability of those studies low. Exceptions exist, such as the promising recently reported open dataset FallAllD, wherein a longitudinal study with older adults is ongoing.


Assuntos
Dispositivos Eletrônicos Vestíveis , Acidentes por Quedas/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Exercício Físico , Marcha , Humanos , Estudos Longitudinais , Masculino
7.
Sensors (Basel) ; 21(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502755

RESUMO

Sensor-based fall risk assessment (SFRA) utilizes wearable sensors for monitoring individuals' motions in fall risk assessment tasks. Previous SFRA reviews recommend methodological improvements to better support the use of SFRA in clinical practice. This systematic review aimed to investigate the existing evidence of SFRA (discriminative capability, classification performance) and methodological factors (study design, samples, sensor features, and model validation) contributing to the risk of bias. The review was conducted according to recommended guidelines and 33 of 389 screened records were eligible for inclusion. Evidence of SFRA was identified: several sensor features and three classification models differed significantly between groups with different fall risk (mostly fallers/non-fallers). Moreover, classification performance corresponding the AUCs of at least 0.74 and/or accuracies of at least 84% were obtained from sensor features in six studies and from classification models in seven studies. Specificity was at least as high as sensitivity among studies reporting both values. Insufficient use of prospective design, small sample size, low in-sample inclusion of participants with elevated fall risk, high amounts and low degree of consensus in used features, and limited use of recommended model validation methods were identified in the included studies. Hence, future SFRA research should further reduce risk of bias by continuously improving methodology.


Assuntos
Acidentes por Quedas , Dispositivos Eletrônicos Vestíveis , Acidentes por Quedas/prevenção & controle , Idoso , Previsões , Humanos , Estudos Prospectivos
8.
Sensors (Basel) ; 20(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182907

RESUMO

The use of wearable body sensors for health monitoring is a quickly growing field with the potential of offering a reliable means for clinical and remote health management. This includes both real-time monitoring and health trend monitoring with the aim to detect/predict health deterioration and also to act as a prevention tool. The aim of this systematic review was to provide a qualitative synthesis of studies using wearable body sensors for health monitoring. The synthesis and analysis have pointed out a number of shortcomings in prior research. Major shortcomings are demonstrated by the majority of the studies adopting an observational research design, too small sample sizes, poorly presented, and/or non-representative participant demographics (i.e., age, gender, patient/healthy). These aspects need to be considered in future research work.


Assuntos
Monitorização Ambulatorial , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Adolescente , Adulto , Idoso , Feminino , Humanos , Internet das Coisas , Masculino , Pessoa de Meia-Idade , Telemedicina , Adulto Jovem
9.
Sensors (Basel) ; 19(14)2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319523

RESUMO

Estimating distances between people and robots plays a crucial role in understanding social Human-Robot Interaction (HRI) from an egocentric view. It is a key step if robots should engage in social interactions, and to collaborate with people as part of human-robot teams. For distance estimation between a person and a robot, different sensors can be employed, and the number of challenges to be addressed by the distance estimation methods rise with the simplicity of the technology of a sensor. In the case of estimating distances using individual images from a single camera in a egocentric position, it is often required that individuals in the scene are facing the camera, do not occlude each other, and are fairly visible so specific facial or body features can be identified. In this paper, we propose a novel method for estimating distances between a robot and people using single images from a single egocentric camera. The method is based on previously proven 2D pose estimation, which allows partial occlusions, cluttered background, and relatively low resolution. The method estimates distance with respect to the camera based on the Euclidean distance between ear and torso of people in the image plane. Ear and torso characteristic points has been selected based on their relatively high visibility regardless of a person orientation and a certain degree of uniformity with regard to the age and gender. Experimental validation demonstrates effectiveness of the proposed method.


Assuntos
Técnicas Biossensoriais , Robótica , Gravação em Vídeo , Algoritmos , Corpo Humano , Humanos
10.
Sensors (Basel) ; 17(7)2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684686

RESUMO

Smart home environments have a significant potential to provide for long-term monitoring of users with special needs in order to promote the possibility to age at home. Such environments are typically equipped with a number of heterogeneous sensors that monitor both health and environmental parameters. This paper presents a framework called E-care@home, consisting of an IoT infrastructure, which provides information with an unambiguous, shared meaning across IoT devices, end-users, relatives, health and care professionals and organizations. We focus on integrating measurements gathered from heterogeneous sources by using ontologies in order to enable semantic interpretation of events and context awareness. Activities are deduced using an incremental answer set solver for stream reasoning. The paper demonstrates the proposed framework using an instantiation of a smart environment that is able to perform context recognition based on the activities and the events occurring in the home.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...