Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-916981

RESUMO

Background@#Enteritis of an infectious origin is a major cause of productivity and economic losses to cattle producers worldwide. Several pathogens are believed to cause or contribute to the development of calf diarrhea. Astroviruses (AstVs) are neglected enteric pathogens in ruminants, but they have recently gained attention because of their possible association with encephalitis in humans and various animal species, including cattle. @*Objectives@#This paper describes a large outbreak of neonatal diarrhea in buffalo calves (Bubalus bubalis), characterized by high mortality, which was associated with an AstV infection. @*Methods@#Following an enteritis outbreak characterized by high morbidity (100%) and mortality (46.2%) in a herd of Mediterranean buffaloes (B. bubalis) in Italy, 16 samples from buffalo calves were tested with the molecular tools for common and uncommon enteric pathogens, including AstV, kobuvirus, and torovirus. @*Results@#The samples tested negative for common enteric viral agents, including Rotavirus A, coronavirus, calicivirus, pestivirus, kobuvirus, and torovirus, while they tested positive for AstV. Overall, 62.5% (10/16) of the samples were positive in a single round reverse transcription polymerase chain reaction (PCR) assay for AstV, and 100% (16/16) were positive when nested PCR was performed. The strains identified in the outbreak showed a clonal origin and shared the closest genetic relationship with bovine AstVs (up to 85% amino acid identity in the capsid). @*Conclusions@#This report indicates that AstVs should be included in a differential diagnosis of infectious diarrhea in buffalo calves.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-080119

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 is the third highly pathogenic human coronavirus in history. Since the emergence in Hubei province, China, during late 2019 the situation evolved to pandemic level. Following China, Europe was the second epicenter of the pandemic. To better comprehend the detailed founder mechanisms of the epidemic evolution in Central-Eastern Europe, particularly in Hungary, we determined the full-length SARS-CoV-2 genomes from 32 clinical samples collected from laboratory confirmed COVID-19 patients over the first month of disease in Hungary. We applied a haplotype network analysis on all available complete genomic sequences of SARS-CoV-2 from GISAID database as of the 21th of April, 2020. We performed additional phylogenetic and phylogeographic analyses to achieve the recognition of multiple and parallel introductory events into our region. Here we present a publicly available network imaging of the worldwide haplotype relations of SARS-CoV-2 sequences and conclude the founder mechanisms of the outbreak in Central-Eastern Europe.

3.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-758781

RESUMO

Rotavirus (RV)-infected piglets are presumed to be latent sources of heterologous RV infection in humans and other animals. In RVs, non-structural protein 4 (NSP4) is the major virulence factor with pleiotropic properties. In this study, we analyzed the nsp4 gene from porcine RVs isolated from diarrheic and non-diarrheic cases at different levels of protein folding to explore correlations to diarrhea-inducing capabilities and evolution of nsp4 in the porcine population. Full-length nsp4 genes were amplified, cloned, sequenced, and then analyzed for antigenic epitopes, RotaC classification, homology, genetic relationship, modeling of NSP4 protein, and prediction of post-translational modification. RV presence was observed in both diarrheic and non-diarrheic piglets. All nsp4 genes possessed the E1 genotype. Comparison of primary, secondary, and tertiary structure and the prediction of post-translational modifications of NSP4 from diarrheic and non-diarrheic piglets revealed no apparent differences. Sequence analysis indicated that nsp4 genes have a multi-phyletic evolutionary origin and exhibit species independent genetic diversity. The results emphasize the evolution of the E9 nsp4 genotype from the E1 genotype and suggest that the diarrhea-inducing capability of porcine RVs may not be exclusively linked to its enterotoxin gene.


Assuntos
Animais , Humanos , Classificação , Células Clonais , Enterotoxinas , Epitopos , Variação Genética , Genótipo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Rotavirus , Análise de Sequência , Proteínas não Estruturais Virais , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...