Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112077

RESUMO

In the work, the impact of the biological medium and water on structural rearrangements in pure polylactide and polylactide/natural rubber film composites was studied. Polylactide/natural rubber films with a rubber content of 5, 10, and 15 wt.% were obtained by the solution method. Biotic degradation was carried out according to the Sturm method at a temperature of 22 ± 2 °C. Hydrolytic degradation was studied at the same temperature in distilled water. The structural characteristics were controlled by thermophysical, optical, spectral, and diffraction methods. Optical microscopy revealed the surface erosion of all samples after exposure to microbiota and water. Differential scanning calorimetry showed a decrease in the degree of crystallinity of polylactide by 2-4% after the Sturm test, and a tendency to an increase in the degree of crystallinity after the action of water was noted. Changes in the chemical structure were shown in the spectra recorded by infrared spectroscopy. Due to degradation, significant changes in the intensities of the bands in the regions of 3500-2900 and 1700-1500 cm-1 were shown. The X-ray diffraction method established differences in diffraction patterns in very defective and less damaged regions of polylactide composites. It was determined that pure polylactide hydrolyzed more readily under the action of distilled water than polylactide/natural rubber composites. Film composites were more rapidly subjected to biotic degradation. The degree of biodegradation of polylactide/natural rubber composites increased with the rise in the content of natural rubber in the compositions.

2.
J Phys Chem A ; 122(17): 4298-4305, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29644856

RESUMO

The photoinduced reactions of benzophenone (B) in biaxially oriented polypropylene (BOPP) were studied with nanosecond laser photolysis (N2 laser, λ337.1 nm). The first observed transient was a triplet state 3B*. Decay of 3B* led to formation of a radical pair (RP) of BH• and R•, where R• is a radical formed by hydrogen abstraction from BOPP (RH) by 3B*. We studied BOPP after the preheating for a short time in a temperature range 298-423 K, which is essentially lower than its melting point of 453 K. All measurements with not-heated and with preheated (annealed) BOPP were made at 298 K. A radical pair (RP) apparently decays as a contact pair 3[BH•, R•] in nonheated BOPP. A critical phenomenon takes place: dissociation of RP with a formation of free radicals in the polymer bulk is observed at preheating temperature Tcrit ≈ 403 K and at a higher T. The physical process of heating and cooling of BOPP apparently resulted in the restructuring of crystallites, their agglomeration, shrinking of the distribution of crystallites according to their sizes in BOPP. Overall BOPP becomes softer which manifests itself in the radical kinetics. The decay kinetics of 3B* and RP in the cage fits well the first-order law. Rate constants were obtained. Radicals BH•, which exit into the polymer bulk at temperatures of preheating T ≥ 403 K, decay by cross-termination according to the second-order law. A relatively high rate constant ∼108 M-1·s-1 for this reaction was obtained due to diffusion of BH• enclosed in the soft amorphous phase of BOPP. Properties of BOPP containing B were studied with ESR, DSC, IR, and WAXD.

3.
Int J Biol Macromol ; 41(5): 534-47, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17719628

RESUMO

High-sensitivity differential scanning microcalorimetry (HSDSC), small-angle X-ray scattering (SAXS), light (LM) and scanning electronic (SEM) microscopy techniques were used to study the defectiveness of different supramolecular structures in starches extracted from 11 Thai cultivars of rice differing in level of amylose and amylopectin defects in starch crystalline lamellae. Despite differences in chain-length distribution of amylopectin macromolecules and amylose level in starches, the invariance in the sizes of crystalline lamellae, amylopectin clusters and granules was established. The combined analysis of DSC, SAXS, LM and SEM data for native starches, as well as the comparison of the thermodynamic data for native and annealed starches, allowed to determine the structure of defects and the localization of amylose chains in crystalline and amorphous lamellae, defectiveness of lamellae, clusters and granules. It was shown that amylose "tie chains", amylose-lipid complexes located in crystalline lamellae, defective ends of double helical chains dangling from crystallites inside amorphous lamellae ("dangling" chains), as well as amylopectin chains with DP 6-12 and 25-36 could be considered as defects. Their accumulation can lead to a formation of remnant granules. The changes observed in the structure of amylopectin chains and amylose content in starches are reflected in the interconnected alterations of structural organization on the lamellar, cluster and granule levels.


Assuntos
Oryza/química , Oryza/genética , Amido/química , Amido/genética , Varredura Diferencial de Calorimetria/métodos , China , Geografia , Microscopia Eletrônica de Varredura/métodos , Oryza/ultraestrutura , Amido/ultraestrutura , Termodinâmica , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...