Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39062934

RESUMO

Serine ß-lactamase TEM-1 is the first ß-lactamase discovered and is still common in Gram-negative pathogens resistant to ß-lactam antibiotics. It hydrolyzes penicillins and cephalosporins of early generations. Some of the emerging TEM-1 variants with one or several amino acid substitutions have even broader substrate specificity and resistance to known covalent inhibitors. Key amino acid substitutions affect catalytic properties of the enzyme, and secondary mutations accompany them. The occurrence of the secondary mutation M182T, called a "global suppressor", has almost doubled over the last decade. Therefore, we performed saturating mutagenesis at position 182 of TEM-1 to determine the influence of this single amino acid substitution on the catalytic properties, thermal stability, and ability for thermoreactivation. Steady-state parameters for penicillin, cephalothin, and ceftazidime are similar for all TEM-1 M182X variants, whereas melting temperature and ability to reactivate after incubation at a higher temperature vary significantly. The effects are multidirectional and depend on the particular amino acid at position 182. The M182E variant of ß-lactamase TEM-1 demonstrates the highest residual enzymatic activity, which is 1.5 times higher than for the wild-type enzyme. The 3D structure of the side chain of residue 182 is of particular importance as observed from the comparison of the M182I and M182L variants of TEM-1. Both of these amino acid residues have hydrophobic side chains of similar size, but their residual activity differs by three-fold. Molecular dynamic simulations add a mechanistic explanation for this phenomenon. The important structural element is the V159-R65-E177 triad that exists due to both electrostatic and hydrophobic interactions. Amino acid substitutions that disturb this triad lead to a decrease in the ability of the ß-lactamase to be reactivated.


Assuntos
Substituição de Aminoácidos , Estabilidade Enzimática , beta-Lactamases , beta-Lactamases/química , beta-Lactamases/genética , beta-Lactamases/metabolismo , Metionina/química , Metionina/metabolismo , Metionina/genética , Modelos Moleculares , Mutagênese , Cinética , Simulação de Dinâmica Molecular , Penicilinas/química , Penicilinas/metabolismo
2.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296624

RESUMO

The influence of the active site flexibility on the efficiency of catalytic reaction is studied by taking two members of metallo-ß-lactamases, L1 and NDM-1, with the same substrate, imipenem. Active sites of these proteins are covered by L10 loops, and differences in their amino acid compositions affect their rigidity. A more flexible loop in the NDM-1 brings additional flexibility to the active site in the ES complex. This is pronounced in wider distributions of key interatomic distances, such as the distance of the nucleophilic attack, coordination bond lengths, and covalent bond lengths in the substrate. Substrate activation, quantified by Fukui electrophilicity index of the carbonyl carbon atom of the substrate, is also sensitive to the active site flexibility. In the tighter and more rigid L1 enzyme-substrate complex, the substrate is activated more efficiently. In the NDM-1 containing system, only one third of the states are activated to the same extent. Other fractions demonstrate lower substrate activation. Efficiency of the substrate activation and rigidity of the ES complex influence the following chemical reaction. In the more rigid L1-containing system, the reaction barrier of the first step of the reaction is lower, and the first intermediate is more stabilized compared to the NDM-1 containing system.


Assuntos
Zinco , beta-Lactamases , beta-Lactamases/química , Domínio Catalítico , Zinco/química , Imipenem , Aminoácidos , Carbono
3.
J Chem Inf Model ; 62(24): 6519-6529, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35758922

RESUMO

Deactivation of the ß-lactam antibiotics in the active sites of the ß-lactamases is among the main mechanisms of bacterial antibiotic resistance. As drugs of last resort, carbapenems are efficiently hydrolyzed by metallo-ß-lactamases, presenting a serious threat to human health. Our study reveals mechanistic aspects of the imipenem hydrolysis by bizinc metallo-ß-lactamases, NDM-1 and L1, belonging to the B1 and the B3 subclasses, respectively. The results of QM(PBE0-D3/6-31G**)/MM simulations show that the enamine product with the protonated nitrogen atom is formed as the major product in NDM-1 and as the only product in the L1 active site. In NDM-1, there is also another reaction pathway that leads to the formation of the (S)-enantiomer of the imine form of the hydrolyzed imipenem; this process occurs with the higher energy barriers. The absence of the second pathway in L1 is due to the different amino acid composition of the active site loop. In L1, the hydrophobic Pro226 residue is located above the pyrroline ring of imipenem that blocks protonation of the carbon atom. Electron density analysis is performed at the stationary points to compare reaction pathways in L1 and NDM-1. Tautomerization from the enamine to the imine form likely happens in solution after the dissociation of the hydrolyzed imipenem from the active site of the enzyme. Classical molecular dynamics simulations of the hydrolyzed imipenem in solution, both with the neutral enamine and the negatively charged N-C2-C3 fragment, demonstrate a huge diversity of conformations. The vast majority of conformations blocks the C3-atom from the side required for the (S)-imine formation upon tautomerization. Thus, according to our calculations, formation of the (R)-imine is more likely. QM(PBE0-D3/6-31G**)/MM molecular dynamics simulations of the hydrolyzed imipenem with the negatively charged N-C2-C3 fragment followed by the Laplacian bond order analysis demonstrate that the N═C2-C3- resonance structure is the most pronounced that facilitates formation of the imine form. The proposed mechanism of the enzymatic enamine formation and its subsequent tautomerization to the imine form in solution is in agreement with the recent spectroscopic and NMR studies.


Assuntos
Imipenem , beta-Lactamases , Humanos , Imipenem/química , Imipenem/metabolismo , beta-Lactamases/química , Domínio Catalítico , Iminas/química , Simulação de Dinâmica Molecular , Água , Antibacterianos/química
4.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613627

RESUMO

Penicillin-binding proteins 2 (PBP2) are critically important enzymes in the formation of the bacterial cell wall. Inhibition of PBP2 is utilized in the treatment of various diseases, including gonorrhea. Ceftriaxone is the only drug used to treat gonorrhea currently, and recent growth in PBP2 resistance to this antibiotic is a serious threat to human health. Our study reveals mechanistic aspects of the inhibition reaction of PBP2 from the wild-type FA19 strain and mutant 35/02 and H041 strains of Neisseria Gonorrhoeae by ceftriaxone. QM(PBE0-D3/6-31G**)/MM MD simulations show that the reaction mechanism for the wild-type PBP2 consists of three elementary steps including nucleophilic attack, C-N bond cleavage in the ß-lactam ring and elimination of the leaving group in ceftriaxone. In PBP2 from the mutant strains, the second and third steps occur simultaneously. For all considered systems, the acylation rate is determined by the energy barrier of the first step that increases in the order of PBP2 from FA19, 35/02 and H041 strains. Dynamic behavior of ES complexes is analyzed using geometry and electron density features including Fukui electrophilicity index and Laplacian of electron density maps. It reveals that more efficient activation of the carbonyl group of the antibiotic leads to the lower energy barrier of nucleophilic attack and larger stabilization of the first reaction intermediate. Dynamical network analysis of MD trajectories explains the differences in ceftriaxone binding affinity: in PBP2 from the wild-type strain, the ß3-ß4 loop conformation facilitates substrate binding, whereas in PBP2 from the mutant strains, it exists in the conformation that is unfavorable for complex formation. Thus, we clarify that the experimentally observed decrease in the second-order rate constant of acylation (k2/KS) in PBP2 from the mutant strains is due to both a decrease in the acylation rate constant k2 and an increase in the dissociation constant KS.


Assuntos
Ceftriaxona , Gonorreia , Humanos , Ceftriaxona/farmacologia , Proteínas de Ligação às Penicilinas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Neisseria gonorrhoeae/genética , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Molecules ; 26(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34684866

RESUMO

We report the results of a computational study of the hydrolysis reaction mechanism of N-acetyl-l-aspartyl-l-glutamate (NAAG) catalyzed by glutamate carboxypeptidase II. Analysis of both mechanistic and electronic structure aspects of this multistep reaction is in the focus of this work. In these simulations, model systems are constructed using the relevant crystal structure of the mutated inactive enzyme. After selection of reaction coordinates, the Gibbs energy profiles of elementary steps of the reaction are computed using molecular dynamics simulations with ab initio type QM/MM potentials (QM/MM MD). Energies and forces in the large QM subsystem are estimated in the DFT(PBE0-D3/6-31G**) approximation. The established mechanism includes four elementary steps with the activation energy barriers not exceeding 7 kcal/mol. The models explain the role of point mutations in the enzyme observed in the experimental kinetic studies; namely, the Tyr552Ile substitution disturbs the "oxyanion hole", and the Glu424Gln replacement increases the distance of the nucleophilic attack. Both issues diminish the substrate activation in the enzyme active site. To quantify the substrate activation, we apply the QTAIM-based approaches and the NBO analysis of dynamic features of the corresponding enzyme-substrate complexes. Analysis of the 2D Laplacian of electron density maps allows one to define structures with the electron density deconcentration on the substrate carbon atom, i.e., at the electrophilic site of reactants. The similar electronic structure element in the NBO approach is a lone vacancy on the carbonyl carbon atom in the reactive species. The electronic structure patterns revealed in the NBO and QTAIM-based analyses consistently clarify the reactivity issues in this system.


Assuntos
Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/genética , Catálise , Dipeptídeos/metabolismo , Eletroquímica , Glutamato Carboxipeptidase II/genética , Humanos , Hidrólise , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação Puntual , Teoria Quântica
6.
Molecules ; 26(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918209

RESUMO

Boronic acids are prospective compounds in inhibition of metallo-ß-lactamases as they form covalent adducts with the catalytic hydroxide anion in the enzymatic active site upon binding. We compare this chemical reaction in the active site of the New Delhi metallo-ß-lactamase (NDM-1) with the hydrolysis of the antibacterial drug imipenem. The nucleophilic attack occurs with the energy barrier of 14 kcal/mol for imipenem and simultaneously upon binding a boronic acid inhibitor. A boron atom of an inhibitor exhibits stronger electrophilic properties than the carbonyl carbon atom of imipenem in a solution that is quantified by atomic Fukui indices. Upon forming the prereaction complex between NDM-1 and inhibitor, the lone electron pair of the nucleophile interacts with the vacant p-orbital of boron that facilitates the chemical reaction. We analyze a set of boronic acid compounds with the benzo[b]thiophene core complexed with the NDM-1 and propose quantitative structure-sroperty relationship (QSPR) equations that can predict IC50 values from the calculated descriptors of electron density. These relations are applied to classify other boronic acids with the same core found in the database of chemical compounds, PubChem, and proposed ourselves. We demonstrate that the IC50 values for all considered benzo[b]thiophene-containing boronic acid inhibitors are 30-70 µM.


Assuntos
Ácidos Borônicos/farmacologia , Domínio Catalítico , Modelos Moleculares , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Ácidos Borônicos/química , Imipenem/química , Imipenem/farmacologia , Concentração Inibidora 50 , Soluções , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...