Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806130

RESUMO

In this study, the nanoscale transformation of the polylactic-co-glycolic acid (PLGA) internal structure, before and after its supercritical carbon dioxide (sc-CO2) swelling and plasticization, followed by foaming after a CO2 pressure drop, was studied by small-angle X-ray scattering (SAXS) for the first time. A comparative analysis of the internal structure data and porosity measurements for PLGA scaffolds, produced by sc-CO2 processing, on a scale ranging from 0.02 to 1000 µm, was performed by SAXS, helium pycnometry (HP), mercury intrusion porosimetry (MIP) and both "lab-source" and synchrotron X-ray microtomography (micro-CT). This approach opens up possibilities for the wide-scale evaluation, computer modeling, and prediction of the physical and mechanical properties of PLGA scaffolds, as well as their biodegradation behavior in the body. Hence, this study targets optimizing the process parameters of PLGA scaffold fabrication for specific biomedical applications.

2.
Lasers Surg Med ; 53(2): 275-283, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32452057

RESUMO

BACKGROUND AND OBJECTIVE: The laser-induced stress relaxation provides new prospects to obtain stable long fragments of costal cartilage for autoimplantation avoiding the risk of spontaneous deformation and poor engraftment. However, the age-related alterations of cartilage may sufficiently influence its interaction with infrared (IR) laser radiation and disrupt the effectiveness and safety of the technique. The aim of the work is to study the influence of the structural quality of costal cartilage on its interaction with IR laser and efficiency of obtaining of curved implants for trachea surgery. STUDY DESIGN/MATERIALS AND METHODS: Healthy costal cartilage was taken from pigs and human. Ossified costal cartilage was taken from humans of age 65 ± 7. The cartilage slices with a mean thickness of 3 mm were mechanically curved and processed to stress relaxation by laser irradiation with the wavelength 1.56 µm. The structure and mineral content were studied by X-ray microtomography and element analysis. The optical measurements included the study of the propagation of IR radiation, speckle interferometry, and IR radiometry. RESULTS: The aged cartilage demonstrates a high level of heterogeneity in structure and properties and decreased water content. The presence of dense inclusions consisting of amorphous calcined volumes makes the tissue more fragile and less elastic. The IR radiation propagation intensity for aged cartilage is at least twice higher than that for healthy cartilage. The thermal-induced motion of scatterers in aged cartilage is slower. X-ray microtomography showed the cartilage-like and the bone-like structures within the ossified samples. CONCLUSIONS: The main challenge for laser reshaping of aged cartilage is the presence of ossifications. However, the new stable curvature can be obtained with adjustment of laser power. To obtain the satisfying stable curvature of an implant the ossified volumes should be avoided The laser-induced stress-relaxation mechanism for aged cartilage can be particularly different from that of healthy tissue and the optimal laser regimes should be specified. Lasers Surg. Med. © 2020 Wiley Periodicals, Inc.


Assuntos
Cartilagem Costal , Animais , Cartilagem , Cartilagem Costal/diagnóstico por imagem , Lasers , Osteogênese , Suínos , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...