Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(10): 3115-3133, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32005658

RESUMO

The fortuitously discovered antiaging membrane protein αKlotho (Klotho) is highly expressed in the kidney, and deletion of the Klotho gene in mice causes a phenotype strikingly similar to that of chronic kidney disease (CKD). Klotho functions as a co-receptor for fibroblast growth factor 23 (FGF23) signaling, whereas its shed extracellular domain, soluble Klotho (sKlotho), carrying glycosidase activity, is a humoral factor that regulates renal health. Low sKlotho in CKD is associated with disease progression, and sKlotho supplementation has emerged as a potential therapeutic strategy for managing CKD. Here, we explored the structure-function relationship and post-translational modifications of sKlotho variants to guide the future design of sKlotho-based therapeutics. Chinese hamster ovary (CHO)- and human embryonic kidney (HEK)-derived WT sKlotho proteins had varied activities in FGF23 co-receptor and ß-glucuronidase assays in vitro and distinct properties in vivo Sialidase treatment of heavily sialylated CHO-sKlotho increased its co-receptor activity 3-fold, yet it remained less active than hyposialylated HEK-sKlotho. MS and glycopeptide-mapping analyses revealed that HEK-sKlotho is uniquely modified with an unusual N-glycan structure consisting of N,N'-di-N-acetyllactose diamine at multiple N-linked sites, one of which at Asn-126 was adjacent to a putative GalNAc transfer motif. Site-directed mutagenesis and structural modeling analyses directly implicated N-glycans in Klotho's protein folding and function. Moreover, the introduction of two catalytic glutamate residues conserved across glycosidases into sKlotho enhanced its glucuronidase activity but decreased its FGF23 co-receptor activity, suggesting that these two functions might be structurally divergent. These findings open up opportunities for rational engineering of pharmacologically enhanced sKlotho therapeutics for managing kidney disease.


Assuntos
Glucuronidase/metabolismo , Insuficiência Renal Crônica/patologia , Animais , Células CHO , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Fator de Crescimento de Fibroblastos 23 , Taxa de Filtração Glomerular/efeitos dos fármacos , Glucuronidase/química , Glucuronidase/genética , Glicopeptídeos/análise , Células HEK293 , Meia-Vida , Humanos , Proteínas Klotho , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Processamento de Proteína Pós-Traducional , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Insuficiência Renal Crônica/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/veterinária , Relação Estrutura-Atividade
2.
Biotechnol Prog ; 35(1): e2724, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30299005

RESUMO

Large-scale transient expression in mammalian cells is a rapid protein production technology often used to shorten overall timelines for biotherapeutics drug discovery. In this study we demonstrate transient expression in a Chinese hamster ovary (CHO) host (ExpiCHO-S™) cell line capable of achieving high recombinant antibody expression titers, comparable to levels obtained using human embryonic kidney (HEK) 293 cells. For some antibodies, ExpiCHO-S™ cells generated protein materials with better titers and improved protein quality characteristics (i.e., less aggregation) than those from HEK293. Green fluorescent protein imaging data indicated that ExpiCHO-S™ displayed a delayed but prolonged transient protein expression process compared to HEK293. When therapeutic glycoproteins containing non-Fc N-linked glycans were expressed in transient ExpiCHO-S™, the glycan pattern was unexpectedly found to have few sialylated N-glycans, in contrast to glycans produced within a stable CHO expression system. To improve N-glycan sialylation in transient ExpiCHO-S™, we co-transfected galactosyltransferase and sialyltransferase genes along with the target genes, as well as supplemented the culture medium with glycan precursors. The authors have demonstrated that co-transfection of glycosyltransferases combined with medium addition of galactose and uridine led to increased sialylation content of N-glycans during transient ExpiCHO-S™ expression. These results have provided a scientific basis for developing a future transient CHO system with N-glycan compositions that are similar to those profiles obtained from stable CHO protein production systems. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2724, 2019.


Assuntos
Formação de Anticorpos/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Células HEK293 , Humanos , Polissacarídeos/metabolismo
3.
Sci Rep ; 8(1): 4241, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523796

RESUMO

Pharmacological administration of FGF21 analogues has shown robust body weight reduction and lipid profile improvement in both dysmetabolic animal models and metabolic disease patients. Here we report the design, optimization, and characterization of a long acting glyco-variant of FGF21. Using a combination of N-glycan engineering for enhanced protease resistance and improved solubility, Fc fusion for further half-life extension, and a single point mutation for improving manufacturability in Chinese Hamster Ovary cells, we created a novel FGF21 analogue, Fc-FGF21[R19V][N171] or PF-06645849, with substantially improved solubility and stability profile that is compatible with subcutaneous (SC) administration. In particular, it showed a low systemic clearance (0.243 mL/hr/kg) and long terminal half-life (~200 hours for intact protein) in cynomolgus monkeys that approaches those of monoclonal antibodies. Furthermore, the superior PK properties translated into robust improvement in glucose tolerance and the effects lasted 14 days post single SC dose in ob/ob mice. PF-06645849 also caused greater body weight loss in DIO mice at lower and less frequent SC doses, compared to previous FGF21 analogue PF-05231023. In summary, the overall PK/PD and pharmaceutical profile of PF-06645849 offers great potential for development as weekly to twice-monthly SC administered therapeutic for chronic treatment of metabolic diseases.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacocinética , Animais , Células CHO , Cricetinae , Cricetulus , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/química , Glicosilação , Células HEK293 , Humanos , Injeções Subcutâneas , Macaca fascicularis , Taxa de Depuração Metabólica , Camundongos , Estabilidade Proteica , Proteólise , Distribuição Tecidual
4.
J Biol Chem ; 288(31): 22758-67, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23792959

RESUMO

Phosphorylation of inhibitor of nuclear transcription factor κB (IκB) by IκB kinase (IKK) triggers the degradation of IκB and migration of cytoplasmic κB to the nucleus where it promotes the transcription of its target genes. Activation of IKK is achieved by phosphorylation of its main subunit, IKKß, at the activation loop sites. Here, we report the 2.8 Å resolution crystal structure of human IKKß (hIKKß), which is partially phosphorylated and bound to the staurosporine analog K252a. The hIKKß protomer adopts a trimodular structure that closely resembles that from Xenopus laevis (xIKKß): an N-terminal kinase domain (KD), a central ubiquitin-like domain (ULD), and a C-terminal scaffold/dimerization domain (SDD). Although hIKKß and xIKKß utilize a similar dimerization mode, their overall geometries are distinct. In contrast to the structure resembling closed shears reported previously for xIKKß, hIKKß exists as an open asymmetric dimer in which the two KDs are further apart, with one in an active and the other in an inactive conformation. Dimer interactions are limited to the C-terminal six-helix bundle that acts as a hinge between the two subunits. The observed domain movements in the structures of IKKß may represent trans-phosphorylation steps that accompany IKKß activation.


Assuntos
Quinase I-kappa B/química , Cristalização , Cristalografia por Raios X , Dimerização , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Ligantes , Modelos Moleculares , Fosforilação
5.
FEBS Lett ; 583(6): 1034-8, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19254717

RESUMO

Advances in genomics and proteomics have generated the needs for the efficient identification of key residues for structure and function of target proteins. Here we report the utilization of a new residue-screening approach, which combines a mammalian high-throughput transient expression system with a PCR-based expression cassette, for the study of the post-translational modification. Applying this approach results in a quick identification of essential N-glycosylation sites of a heavily glycosylated neuroglycoprotein Lingo-1, which are sufficient for the support of its surface expression. These key N-glycosylated sites uniquely locate on the concave surface of the elongated arc-shape structure of the leucine-rich repeat domain. The swift residue-screening approach may provide a new strategy for structural and functional analysis.


Assuntos
Asparagina/análise , Membrana Celular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência de Proteína/métodos , Antígenos de Superfície/metabolismo , Asparagina/metabolismo , Células Cultivadas , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Proteínas de Membrana/genética , Modelos Biológicos , Mutagênese Sítio-Dirigida/métodos , Proteínas do Tecido Nervoso/genética , Plasmídeos/química , Reação em Cadeia da Polimerase/métodos , Conformação Proteica , Fatores de Tempo
6.
Biochemistry ; 48(9): 2021-32, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19206206

RESUMO

Bruton's tyrosine kinase (Btk) plays a central role in signal transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. A number of cell signaling studies clearly show that Btk is activated by Lyn, a Src family kinase, through phosphorylation on activation loop tyrosine 551 (Y(551)). However, the detailed molecular mechanism regulating Btk activation remains unclear. In particular, we do not fully understand the correlation of kinase activity with Y(551) phosphorylation, and the role of the noncatalytic domains of Btk in the activation process. Insect cell expressed full-length Btk is enzymatically active, but a truncated version of Btk, composed of only the kinase catalytic domain, is largely inactive. Further characterization of both forms of Btk by mass spectrometry showed partial phosphorylation of Y(551) of the full-length enzyme and none of the truncated kinase domain. To determine whether the lack of activity of the kinase domain was due to the absence of Y(551) phosphorylation, we developed an in vitro method to generate Y(551) monophosphorylated Btk kinase domain fragment using the Src family kinase Lyn. Detailed kinetic analyses demonstrated that the in vitro phosphorylated Btk kinase domain has a similar activity as the full-length enzyme while the unphosphorylated kinase domain has a very low k(cat) and is largely inactive. A divalent magnesium metal dependence study established that Btk requires a second magnesium ion for activity. Furthermore, our analysis revealed significant differences in the second metal-binding site among the kinase domain and the full-length enzyme that likely account for the difference in their catalytic profile. Taken together, our study provides important mechanistic insights into Btk kinase activity and phosphorylation-mediated regulation.


Assuntos
Proteínas Tirosina Quinases/metabolismo , Tirosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/farmacologia , Tirosina Quinase da Agamaglobulinemia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Western Blotting , Catálise/efeitos dos fármacos , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Fragmentos de Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Spodoptera , Especificidade por Substrato
7.
Protein Sci ; 18(3): 569-78, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19241384

RESUMO

Acidic mammalian chitinase (AMCase) is a mammalian chitinase that has been implicated in allergic asthma. One of only two active mammalian chinases, AMCase, is distinguished from other chitinases by several unique features. Here, we present the novel structure of the AMCase catalytic domain, both in the apo form and in complex with the inhibitor methylallosamidin, determined to high resolution by X-ray crystallography. These results provide a structural basis for understanding some of the unique characteristics of this enzyme, including the low pH optimum and the preference for the beta-anomer of the substrate. A triad of polar residues in the second-shell is found to modulate the highly conserved chitinase active site. As a novel target for asthma therapy, structural details of AMCase activity will help guide the future design of specific and potent AMCase inhibitors.


Assuntos
Quitinases/química , Quitinases/metabolismo , Concentração de Íons de Hidrogênio , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Sequência de Aminoácidos , Animais , Asma/metabolismo , Células CHO , Domínio Catalítico/fisiologia , Quitinases/genética , Cricetinae , Cricetulus , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Especificidade por Substrato/fisiologia , Trissacarídeos/metabolismo
8.
Arch Biochem Biophys ; 483(1): 45-54, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19121282

RESUMO

Tissue specific amplification of glucocorticoid action through NADPH-dependent reduction of inactive glucocorticoid precursors by 11beta-hydroxysteroid dehydrogenase (11beta-HSD1) contributes to the development of visceral obesity, insulin resistance and Type 2 Diabetes. Hexose-6-phosphate dehydrogenase (H6PDH) is believed to supply NADPH for the reductase activity of 11beta-HSD1 in the lumen of the endoplasmic reticulum (ER), where the two enzymes are co-localized. We report here expression and purification of full-length and truncated N-terminal domain (NTD) of H6PDH in a mammalian expression system. Interestingly, both full-length H6PDH and the truncated NTD are secreted into the culture medium in the absence of 11beta-HSD1. Purified full-length H6PDH is a bi-functional enzyme with glucose-6-phosphate dehydrogenase (G6PDH) activity as well as 6-phosphogluconolactonase (6PGL) activity. Using co-immunoprecipitation experiments with purified H6PDH and 11beta-HSD1, and with cell lysates expressing H6PDH and 11beta-HSD1, we observe direct physical interaction between the two enzymes. We also show the modulation of 11beta-HSD1 directionality by H6PDH using overexpression and siRNA knockdown systems. The NTD retains the ability to interact with 11beta-HSD1 physically as well as modulate 11beta-HSD1 directionality indicating that the NTD of H6PDH is sufficient for the regulation of the 11beta-HSD1 activity.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Desidrogenases de Carboidrato/metabolismo , Glucocorticoides/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Sequência de Bases , Desidrogenases de Carboidrato/genética , Catálise , Linhagem Celular , Primers do DNA/genética , Gluconatos/metabolismo , Humanos , Técnicas In Vitro , Cinética , Mutagênese Sítio-Dirigida , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Transfecção
9.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 64(Pt 11): 1063-5, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18997343

RESUMO

CD39 is a prototype member of the ecto-nucleoside triphosphate diphosphohydrolase family that hydrolyzes extracellular nucleoside diphosphates and triphosphates in the presence of divalent cations. Here, the expression, purification and crystallization of the ecto-enzymatic domain of rat CD39, sCD39, are described. The 67 kDa secreted soluble glycoprotein was recombinantly overexpressed in a glycosylation mutant CHO line, Lec.3.2.8.1, and purified from conditioned media. Diffraction-quality crystals of sCD39 were produced by the vapor-diffusion method using PEG 3350 and ammonium dihydrogen phosphate as precipitants. The enzyme crystallized in a primitive trigonal form in space group P3(2), with unit-cell parameters a = b = 118.1, c = 81.6 A and with two sCD39 copies in the asymmetric unit. Several low- to medium-resolution diffraction data sets were collected using an in-house X-ray source. Analysis of the intensity statistics showed that the crystals were invariably merohedrally twinned with a high twin fraction. For initial phasing, a molecular-replacement search was performed against the complete 3.2 A data set using a maximum-likelihood molecular-replacement method as implemented in Phaser. The initial model of the two sCD39 monomers was placed into the P3(2) lattice and rigid-body refined and position-minimized with PHENIX.


Assuntos
Antígenos CD/química , Apirase/química , Estrutura Terciária de Proteína , Animais , Antígenos CD/genética , Apirase/genética , Cristalização , Dados de Sequência Molecular , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
10.
Biochemistry ; 47(16): 4674-82, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18363340

RESUMO

GPIbalpha is an integral membrane protein of the GPIb-IX-V complex found on the platelet surface that interacts with the A1 domain of von Willebrand factor (vWF-A1). The interaction of GPIbalpha with vWF-A1 under conditions of high shear stress is the first step in platelet-driven thrombus formation. Phage display was used to identify peptide antagonists of the GPIbalpha-vWF-A1 interaction. Two nine amino acid cysteine-constrained phage display libraries were screened against GPIbalpha revealing peptides that formed a consensus sequence. A peptide with sequence most representative of the consensus, designated PS-4, was used as the basis for an optimized library. The optimized selection identified additional GPIbalpha binding peptides with sequences nearly identical to the parent peptide. Surface plasmon resonance of the PS-4 parent and two optimized synthetic peptides, OS-1 and OS-2, determined their equilibrium dissociation GPIbalpha binding constants ( K Ds) of 64, 0.74, and 31 nM, respectively. Isothermal calorimetry corroborated the K D of peptide PS-4 with a resulting affinity value of 68 nM. An ELISA demonstrated that peptides PS-4, OS-1, and OS-2 competitively inhibited the interaction between the vWF-A1 domain and GPIbalpha-Fc in a concentration-dependent manner. All three peptides inhibited GPIbalpha-vWF-mediated platelet aggregation induced under high shear conditions using the platelet function analyzer (PFA-100) with full blockade observed at 150 nM for OS-1. In addition, OS-1 blocked ristocetin-induced platelet agglutination of human platelets in plasma with no influence on platelet aggregation induced by several agonists of alternative platelet aggregation pathways, demonstrating that this peptide specifically disrupted the GPIbalpha-vWF-A1 interaction.


Assuntos
Peptídeos/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIb-IX de Plaquetas/antagonistas & inibidores , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Fator de von Willebrand/metabolismo , Sequência de Aminoácidos , Ligação Competitiva , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Calorimetria , Ensaio de Imunoadsorção Enzimática , Humanos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Biblioteca de Peptídeos , Peptídeos/química , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Ligação Proteica , Ressonância de Plasmônio de Superfície , Temperatura , Titulometria
11.
Eur J Immunol ; 38(2): 550-64, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18196517

RESUMO

P-Selectin glycoprotein ligand-1 (PSGL-1) is a mucin-like glycoprotein expressed on the surface of leukocytes that serves as the major ligand for the selectin family of adhesion molecules and functions in leukocyte tethering and rolling on activated endothelium and platelets. Previous studies have implicated the highly conserved cytoplasmic domain of PSGL-1 in regulating outside-in signaling of integrin activation. However, molecules that physically and functionally interact with this domain are not completely defined. Using a yeast two-hybrid screen with the cytoplasmic domain of PSGL-1 as bait, a novel protein designated selectin ligand interactor cytoplasmic-1 (SLIC-1) was isolated. Computer-based homology search revealed that SLIC-1 was the human orthologue for the previously identified mouse sorting nexin 20. Direct interaction between SLIC-1 and PSGL-1 was specific as indicated by co-immunoprecipitation and motif mapping. Colocalization experiments demonstrated that SLIC-1 contains a Phox homology domain that binds phosphoinositides and targets the PSGL-1/SLIC-1 complex to endosomes. Deficiency in the murine homologue of SLIC-1 did not modulate PSGL-1-dependent signaling nor alter neutrophil adhesion through PSGL-1. We conclude that SLIC-1 serves as a sorting molecule that cycles PSGL-1 into endosomes with no impact on leukocyte recruitment.


Assuntos
Proteínas de Transporte/fisiologia , Glicoproteínas de Membrana/metabolismo , Selectina-P/metabolismo , Nexinas de Classificação/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Células COS , Proteínas de Transporte/isolamento & purificação , Movimento Celular/fisiologia , Chlorocebus aethiops , Cricetinae , Cricetulus , Endossomos/metabolismo , Humanos , Células K562 , Leucócitos/citologia , Leucócitos/metabolismo , Ligantes , Camundongos , Dados de Sequência Molecular , Nexinas de Classificação/isolamento & purificação , Frações Subcelulares/química , Frações Subcelulares/metabolismo , Proteínas de Transporte Vesicular/isolamento & purificação
12.
J Biol Chem ; 282(28): 20523-33, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17500071

RESUMO

Secreted Frizzled-related protein-1 (sFRP-1) belongs to a class of extracellular antagonists that modulate Wnt signaling pathways by preventing ligand-receptor interactions among Wnts and Frizzled membrane receptor complexes. sFRP-1 and Wnts are heparin-binding proteins, and their interaction can be stabilized by heparin in vitro. Here we report that heparin can specifically enhance recombinant sFRP-1 accumulation in a cell type-specific manner. The effect requires O-sulfation in heparin, and involves fibroblast growth factor-2 as well as fibroblast growth factor receptor-1. Interestingly, further investigation uncovers that heparin can also affect the post-translational modification of sFRP-1. We demonstrate that sFRP-1 is post-translationally modified by tyrosine sulfation at tyrosines 34 and 36, which is inhibited by the treatment of heparin. The results suggest that accumulation of sFRP-1 induced by heparin is in part due to the relative stabilization of unsulfated sFRP-1 and the direct stabilization by heparin. The study has revealed a multifaceted regulation on sFRP-1 protein by heparin.


Assuntos
Anticoagulantes/farmacologia , Heparina/farmacologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Linhagem Celular , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas/genética , Proteínas/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
13.
J Biol Chem ; 281(47): 36378-90, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17005555

RESUMO

Nogo receptor (NgR)-mediated control of axon growth relies on the central nervous system-specific type I transmembrane protein Lingo-1. Interactions between Lingo-1 and NgR, along with a complementary co-receptor, result in neurite and axonal collapse. In addition, the inhibitory role of Lingo-1 is particularly important in regulation of oligodendrocyte differentiation and myelination, suggesting that pharmacological modulation of Lingo-1 function could be a novel approach for nerve repair and remyelination therapies. Here we report on the crystal structure of the ligand-binding ectodomain of human Lingo-1 and show it has a bimodular, kinked structure composed of leucine-rich repeat (LRR) and immunoglobulin (Ig)-like modules. The structure, together with biophysical analysis of its solution properties, reveals that in the crystals and in solution Lingo-1 persistently associates with itself to form a stable tetramer and that it is its LRR-Ig-composite fold that drives such assembly. Specifically, in the crystal structure protomers of Lingo-1 associate in a ring-shaped tetramer, with each LRR domain filling an open cleft in an adjacent protomer. The tetramer buries a large surface area (9,200 A2) and may serve as an efficient scaffold to simultaneously bind and assemble the NgR complex components during activation on a membrane. Potential functional binding sites that can be identified on the ectodomain surface, including the site of self-recognition, suggest a model for protein assembly on the membrane.


Assuntos
Sistema Nervoso Central/lesões , Sistema Nervoso Central/patologia , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Animais , Axônios/metabolismo , Biofísica/métodos , Células CHO , Diferenciação Celular , Membrana Celular/metabolismo , Cricetinae , Cristalografia por Raios X , Humanos , Leucina/química , Proteínas de Membrana/metabolismo , Bainha de Mielina/química , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , Estrutura Terciária de Proteína
14.
Anal Biochem ; 358(1): 59-69, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16962550

RESUMO

NIMA (never in mitosis arrest)-related kinase 2 (Nek2) is a serine/threonine kinase required for centrosome splitting and bipolar spindle formation during mitosis. Currently, two in vitro kinase assays are commercially available: (i) a radioactive assay from Upstate Biotechnology and (ii) a nonradioactive fluorescence resonance energy transfer (FRET) assay from Invitrogen. However, due to several limitations such as radioactive waste management and lower sensitivity, a need for more robust nonradioactive assays would be ideal. Accordingly, we have developed four quantitative and sensitive nonradioactive Nek2 in vitro kinase assays: (i) a dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) using peptides identified from a physiologically relevant protein substrate, (ii) DELFIA using Nek2 itself, (iii) a homogeneous time-resolved FRET assay termed LANCE, and (iv) A method of detecting phosphorylated products by HPLC. The DELFIA and LANCE assays are robust in that they generated more than 10-fold and 20-fold increases in signal-to-noise ratios, respectively, and are amenable to robotic high-throughput screening platforms. Validation of all four assays was confirmed by identifying a panel of small molecule ATP competitive inhibitors from an internal corporate library. The most potent compounds consistently demonstrated less than 100 nM activity regardless of the assay format and therefore were complementary. In summary, the Nek2 in vitro time-resolved FRET kinase assays reported are sensitive, quantitative, reproducible and amenable to high-throughput screening with improved waste management over radioactive assays.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Fluorimunoensaio/métodos , Proteínas Serina-Treonina Quinases/análise , Animais , Anticorpos Monoclonais , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Európio , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos , Quinases Relacionadas a NIMA , Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Coelhos , Sensibilidade e Especificidade
16.
Biochemistry ; 44(28): 9563-73, 2005 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-16008341

RESUMO

Protein kinase C theta (PKCtheta), a member of the Ca(2+)-independent novel subfamily of PKCs, is required for T-cell receptor (TCR) signaling and IL2 production. PKCtheta-deficient mice have impaired Th2 responses in a murine ova-induced asthma model, while Th1 responses are normal. As an essential component of the TCR signaling complex, PKCtheta is a unique T-cell therapeutic target in the specific treatment of T-cell-mediated diseases. We report here the PKCtheta autophosphorylation characteristics and elucidation of the catalytic mechanism of the PKCtheta kinase domain using steady-state kinetics. Key phosphorylated residues of the active PKCtheta kinase domain expressed in Escherichia coli were characterized, and mutational analysis of the kinase domain was performed to establish the autophosphorylation and kinase activity relationships. Initial velocity, product inhibition, and dead-end inhibition studies provided assignments of the kinetic mechanism of PCKtheta(362)(-)(706) as ordered, wherein ATP binds kinase first and ADP is released last. Effects of solvent viscosity and ATPgammaS on PKCtheta catalysis demonstrated product release is partially rate limiting. Our studies provide important mechanistic insights into kinase activity and phosphorylation-mediated regulation of the novel PKC isoform, PKCtheta. These results should aid the design and discovery of PKCtheta antagonists as therapeutics for modulating T-cell-mediated immune and respiratory diseases.


Assuntos
Domínio Catalítico , Isoenzimas/química , Isoenzimas/metabolismo , Proteína Quinase C/química , Proteína Quinase C/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Ligação Competitiva , Catálise , Domínio Catalítico/genética , Ativação Enzimática , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Concentração Osmolar , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Proteína Quinase C-theta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Serina/genética , Especificidade por Substrato , Treonina/química , Treonina/genética , Treonina/metabolismo
17.
Biochim Biophys Acta ; 1723(1-3): 143-50, 2005 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-15777625

RESUMO

CD39 is a membrane-bound ecto-nucleoside triphosphate diphosphohydrolase that is involved in the regulation of purinergic signaling. It has been previously reported that N-linked glycosylation is essential for the surface localization of CD39 and for its cellular activity. Here we have addressed the roles of different stages of N-linked glycosylation on CD39's activity and surface expression by using various glycosylation inhibitors, glycosylation deficient CHO cells, and oligosaccharide removal enzymes. The results demonstrate that endoplasmic reticulum glycosylation is required for protein folding and essential for functional surface expression of CD39, while Golgi glycosylation is less important. The study has also shown that N-linked glycosylation of CD39 is dispensable for the activity after the protein is properly folded and targeted.


Assuntos
Adenosina Trifosfatases/metabolismo , Antígenos CD/metabolismo , Retículo Endoplasmático/fisiologia , Complexo de Golgi/metabolismo , Animais , Apirase , Células CHO , Células COS , Cricetinae , Glicosídeo Hidrolases/farmacologia , Glicosilação , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/farmacologia
18.
FEBS Lett ; 562(1-3): 111-7, 2004 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-15044010

RESUMO

P(2)Y(12) receptor is a G(i)-coupled adenosine diphosphate (ADP) receptor with a critical role in platelet aggregation. It contains two potential N-linked glycosylation sites at its extra cellular amino-terminus, which may modulate its activity. Studies of both tunicamycin treatment and site-directed mutagenesis have revealed a dispensable role of the N-linked glycosylation in the receptor's surface expression and ligand binding activity. However, the non-glycosylated P(2)Y(12) receptor is defective in the P(2)Y(12)-mediated inhibition of the adenylyl cyclase activity. Thus the study uncovers an unexpected vital role of N-linked glycans in receptor's signal transducing step but not in surface expression or ligand binding.


Assuntos
Plaquetas/metabolismo , Membrana Celular/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/fisiologia , Difosfato de Adenosina/metabolismo , Inibidores de Adenilil Ciclases , Adenilil Ciclases/metabolismo , Animais , Linhagem Celular , Glicosilação , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y12
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...