Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(22): 11428-11435, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38764431

RESUMO

Model bilayers are constructed from lipids having different intrinsic curvatures using the droplet interface bilayer (DIB) method, and their static physicochemical properties are determined. Geometrical and tensiometric measurements are used to derive the free energy of formation (ΔF) of a two-droplet DIB relative to a pair of isolated aqueous droplets, each decorated with a phospholipid monolayer. The lipid molecules employed have different headgroup sizes but identical hydrophobic tail structure, and each is characterized by an intrinsic curvature value (c0) that increases in absolute value with decreasing size of headgroup. Mixtures of lipids at different ratios were also investigated. The role of curvature stress on the values of ΔF of the respective lipid bilayers in these model membranes is discussed and is illuminated by the observation of a decrement in ΔF that scales as a near linear function of c02. Overall, the results reveal an association that should prove useful in studies of ion channels and other membrane proteins embedded in model droplet bilayer systems that will impact the understanding of protein function in cellular membranes composed of lipids of high and low curvature.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Fosfolipídeos/química
2.
Langmuir ; 39(46): 16444-16456, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37939382

RESUMO

Aspirin has been used for broad therapeutic treatment, including secondary prevention of cardiovascular disease associated with increased cholesterol levels. Aspirin and other nonsteroidal anti-inflammatory drugs have been shown to interact with lipid membranes and change their biophysical properties. In this study, mixed lipid model bilayers made from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) or 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) comprising varying concentrations of cholesterol (10:1, 4:1, and 1:1 mole ratio of lipid:chol), prepared by the droplet interface bilayer method, were used to examine the effects of aspirin at various pH on transbilayer water permeability. The presence of aspirin increases the water permeability of POPC bilayers in a concentration-dependent manner, with a greater magnitude of increase at pH 3 compared to pH 7. In the presence of cholesterol, aspirin is similarly shown to increase water permeability; however, the extent of the increase depends on both the concentration of cholesterol and the pH, with the least pronounced enhancement in water permeability at high cholesterol levels at pH 7. A fusion of data from differential scanning calorimetry, confocal Raman microspectrophotometry, and interfacial tensiometric measurements demonstrates that aspirin can promote significant thermal, structural, and interfacial property perturbations in the mixed-lipid POPC or DOPC membranes containing cholesterol, indicating a disordering effect on the lipid membranes. Our findings suggest that aspirin fluidizes phosphocholine membranes in both cholesterol-free and cholesterol-enriched states and that the overall effect is greater when aspirin is in a neutral state. These results confer a deeper comprehension of the divergent effects of aspirin on biological membranes having heterogeneous compositions, under varying physiological pH and different cholesterol compositions, with implications for a better understanding of the gastrointestinal toxicity induced by the long term use of this important nonsteroidal anti-inflammatory molecule.


Assuntos
Aspirina , Fosfatidilcolinas , Aspirina/farmacologia , Fosfatidilcolinas/química , Colesterol/química , Bicamadas Lipídicas/química , Água , Anti-Inflamatórios , Concentração de Íons de Hidrogênio
3.
ACS Chem Neurosci ; 13(7): 1046-1054, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35298887

RESUMO

Cannabidiol (CBD), the major nonpsychoactive component of plant-derived cannabinoids, has been reported to have a broad range of potential beneficial pharmacological effects on the central nervous system (CNS). In this study, the droplet interface bilayer, a model cell membrane, is used to examine the effects of CBD on passive water permeability, a fundamental membrane biophysical property. The presence of CBD decreases the water permeability of model lipid membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and at low concentrations of cholesterol (Chol) (20 mol %) in DOPC, whereas when higher concentrations of Chol are present (33 mol %), CBD has an opposing effect, increasing water permeability. The diametric effect in water permeability change upon addition of CBD to Chol-low and Chol-high bilayers signifies a variant interaction of CBD, depending on the initial state of bilayer packing and fluidity. Additionally, differential scanning calorimetry studies provide evidence that there are selective changes in thermotropic behavior for CBD with DOPC and with DOPC/Chol membranes, respectively, supportive of these varying membrane interactions of CBD dependent upon cholesterol. The intriguing ability of CBD to sensitively respond to membrane Chol concentrations in modifying physical properties highlights the significant impact that CBD can have on heterogeneous biomembranes including those of the CNS, the neurons of which are enriched in Chol to a point where up to a quarter of the body's total Chol is in the brain, and defective brain Chol homeostasis is implicated in neurodegenerative diseases.


Assuntos
Canabidiol , Bicamadas Lipídicas , Varredura Diferencial de Calorimetria , Canabidiol/farmacologia , Membrana Celular/metabolismo , Colesterol/metabolismo , Bicamadas Lipídicas/metabolismo , Fosfatidilcolinas/química
4.
Langmuir ; 37(15): 4468-4480, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33826350

RESUMO

The interactions between drugs and cell membranes can modulate the structural and physical properties of membranes. The resultant perturbations of the membrane integrity may affect the conformation of the proteins inserted within the membrane, disturbing the membrane-hosted biological functions. In this study, the droplet interface bilayer (DIB), a model cell membrane, is used to examine the effects of ibuprofen, a nonsteroidal anti-inflammatory drug (NSAID), on transbilayer water permeability, which is a fundamental membrane biophysical property. Our results indicate that the presence of neutral ibuprofen (pH 3) increases the water permeability of the lipid membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). When cholesterol is present with the DOPC, however, the water permeability is not influenced by addition of ibuprofen, regardless of the cholesterol content in DOPC. Given the fact that cholesterol is generally considered to impact packing in the hydrocarbon chain regions, our findings suggest that a potential competition between opposing effects of ibuprofen molecules and cholesterol on the hydrocarbon core environment of the phospholipid assembly may influence the overall water transport phenomena. Results from confocal Raman microspectroscopy and interfacial tensiometry show that ibuprofen molecules induce substantial structural and dynamic changes in the DOPC lipid bilayer. These results, demonstrating that the presence of ibuprofen increases the water permeability of pure DOPC but not that of DOPC-cholesterol mixtures, provide insight into the differential effect of a representative NSAID on heterogeneous biological membranes, depending upon the local composition and structure, results which will signal increased understanding of the gastrointestinal damage and toxicity induced by these molecules.


Assuntos
Ibuprofeno , Fosfatidilcolinas , Colesterol , Bicamadas Lipídicas , Permeabilidade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...