Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1305338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389535

RESUMO

Background: This paper brings new information about the genome and phenotypic characteristics of Pantoea agglomerans strain DBM 3797, isolated from fresh Czech hop (Humulus lupulus) in the Saaz hop-growing region. Although P. agglomerans strains are frequently isolated from different materials, there are not usually thoroughly characterized even if they have versatile metabolism and those isolated from plants may have a considerable potential for application in agriculture as a support culture for plant growth. Methods: P. agglomerans DBM 3797 was cultured under aerobic and anaerobic conditions, its metabolites were analyzed by HPLC and it was tested for plant growth promotion abilities, such as phosphate solubilization, siderophore and indol-3-acetic acid productions. In addition, genomic DNA was extracted, sequenced and de novo assembly was performed. Further, genome annotation, pan-genome analysis and selected genome analyses, such as CRISPR arrays detection, antibiotic resistance and secondary metabolite genes identification were carried out. Results and discussion: The typical appearance characteristics of the strain include the formation of symplasmata in submerged liquid culture and the formation of pale yellow colonies on agar. The genetic information of the strain (in total 4.8 Mb) is divided between a chromosome and two plasmids. The strain lacks any CRISPR-Cas system but is equipped with four restriction-modification systems. The phenotypic analysis focused on growth under both aerobic and anaerobic conditions, as well as traits associated with plant growth promotion. At both levels (genomic and phenotypic), the production of siderophores, indoleacetic acid-derived growth promoters, gluconic acid, and enzyme activities related to the degradation of complex organic compounds were found. Extracellular gluconic acid production under aerobic conditions (up to 8 g/l) is probably the result of glucose oxidation by the membrane-bound pyrroloquinoline quinone-dependent enzyme glucose dehydrogenase. The strain has a number of properties potentially beneficial to the hop plant and its closest relatives include the strains also isolated from the aerial parts of plants, yet its safety profile needs to be addressed in follow-up research.

2.
Plant Physiol Biochem ; 201: 107851, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354728

RESUMO

Hop (Humulus lupulus L.) is an important commercial crop known for the biosynthesis of valuable specialized secondary metabolites in glandular trichomes (lupulin glands), which are used for the brewing industry. To achieve burgeoning market demands is the essentiality of comprehensive understanding of the mechanisms of biosynthesis of secondary metabolites in hop. Over the past year, several studies using structural biology and functional genomics approaches have shown that Mediator (MED) serves as an integrative hub for RNAP II-mediated transcriptional regulation of various physiological and cellular processes, including involvement of MED5a and MED5b in hyperaccumulation of phenylpropanoid in A. thaliana. In the present work, an unprecedented attempt was made to generate Hlmed5a/med5b double loci mutant lines in hop using a CRISPR/Cas9-based genome editing system. The Hlmed5a/med5b double loci mutant lines showed reduced expression of structural genes of the flavonoid, humulone, and terpenoid biosynthetic pathways, which was more pronounced in the lupulin gland compared to leaf tissue and was consistent with their reduced accumulation. Phenotypic and anatomical observations revealed that Hlmed5a/med5b double loci mutant line exhibited robust growth, earlier flowering, earlier cone maturity, reduced cone size, variations in floral structure patterns, and distorted lupulin glands without any remarkable changes in leaf morphology, intensity of leaf color, and chlorophyll content. Comparative transcriptome analysis of leaf and lupulin gland tissues indicates that the expression of enzymatic genes related to secondary metabolite biosynthesis, phytohormone biosynthesis, floral organs, flowering time, and trichome development, including other genes related to starch and sucrose metabolism and defense mechanisms, were differentially modulated in the Hlmed5a/med5b lines. The combined results from functional and transcriptomic analyses illuminates the pivotal function of HlMED5a and HlMED5b in homeostasis of secondary meatbolites accumulation in hop.


Assuntos
Humulus , Humulus/genética , Sistemas CRISPR-Cas , Perfilação da Expressão Gênica , Transcriptoma , Genômica
3.
Food Res Int ; 169: 112832, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254407

RESUMO

Hop is widely used in beer brewing and as a medicinal product. The present study comprehensively analyzed the main molecular determinants of the antibacterial activity of hop extracts. Minimum inhibitory concentrations (MIC) against Bacillus subtilis between 31.25 and 250 µg/mL were found in the ethanolic extracts of five hop varieties for beer brewing, but not in the tea hop sample. Activity-guided fractionation revealed the highest antibacterial activity for lupulone and adlupulone (MIC 0.98 µg/mL). Metabolome profiling and subsequent multistep statistical analysis detected 33 metabolites out of 1826 features to be associated with the antibacterial activity including humulone, adhumulone, colupulone, lupulone, and adlupulone. Xanthohumol, the three humulone- and three lupulone congeners were quantified in the hop extracts by a validated ultrahigh-performance liquid chromatography-mass spectrometry method. Considering concentrations and MICs, colupulone and lupulone were identified as major contributors to the antibacterial activity of hop extract with the highest antibacterial activity values (concentration/MIC) of 1.59 and 2.56.


Assuntos
Antibacterianos , Metaboloma , Antibacterianos/farmacologia
4.
Plant Physiol Biochem ; 197: 107636, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36958151

RESUMO

Hop (Humulus lupulus) biosynthesizes the highly economically valuable secondary metabolites, which include flavonoids, bitter acids, polyphenols and essential oils. These compounds have important pharmacological properties and are widely implicated in the brewing industry owing to bittering flavor, floral aroma and preservative activity. Our previous studies documented that ternary MYB-bHLH-WD40 (MBW) and binary WRKY1-WD40 (WW) protein complexes transcriptionally regulate the accumulation of bitter acid (BA) and prenylflavonoids (PF). In the present study, we investigated the regulatory functions of the R2R3-MYB repressor HlMYB7 transcription factor, which contains a conserved N-terminal domain along with the repressive motif EAR, in regulating the PF- and BA-biosynthetic pathway and their accumulation in hop. Constitutive expression of HlMYB7 resulted in transcriptional repression of structural genes involved in the terminal steps of biosynthesis of PF and BA, as well as stunted growth, delayed flowering, and reduced tolerance to viroid infection in hop. Furthermore, yeast two-hybrid and transient reporter assays revealed that HlMYB7 targets both PF and BA pathway genes and suppresses MBW and WW protein complexes. Heterologous expression of HlMYB7 leads to down-regulation of structural genes of flavonoid pathway in Arabidopsis thaliana, including a decrease in anthocyanin content in Nicotiana tabacum. The combined results from functional and transcriptomic analyses highlight the important role of HlMYB7 in fine-tuning and balancing the accumulation of secondary metabolites at the transcriptional level, thus offer a plausible target for metabolic engineering in hop.


Assuntos
Arabidopsis , Humulus , Fatores de Transcrição/metabolismo , Flavonoides/metabolismo , Humulus/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Plants (Basel) ; 10(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34834660

RESUMO

Viroids are small infectious pathogens, composed of a short single-stranded circular RNA. Hop (Humulus lupulus L.) plants are hosts to four viroids from the family Pospiviroidae. Hop latent viroid (HLVd) is spread worldwide in all hop-growing regions without any visible symptoms on infected hop plants. In this study, we evaluated the influence of HLVd infection on the content and the composition of secondary metabolites in maturated hop cones, together with gene expression analyses of involved biosynthesis and regulation genes for Saaz, Sládek, Premiant and Agnus cultivars. We confirmed that the contents of alpha bitter acids were significantly reduced in the range from 8.8% to 34% by viroid infection. New, we found that viroid infection significantly reduced the contents of xanthohumol in the range from 3.9% to 23.5%. In essential oils of Saaz cultivar, the contents of monoterpenes, terpene epoxides and terpene alcohols were increased, but the contents of sesquiterpenes and terpene ketones were decreased. Secondary metabolites changes were supported by gene expression analyses, except essential oils. Last-step biosynthesis enzyme genes, namely humulone synthase 1 (HS1) and 2 (HS2) for alpha bitter acids and O-methytransferase 1 (OMT1) for xanthohumol, were down-regulated by viroid infection. We found that the expression of ribosomal protein L5 (RPL5) RPL5 and the splicing of transcription factor IIIA-7ZF were affected by viroid infection and a disbalance in proteosynthesis can influence transcriptions of biosynthesis and regulatory genes involved in of secondary metabolites biosynthesis. We suppose that RPL5/TFIIIA-7ZF regulatory cascade can be involved in HLVd replication as for other viroids of the family Pospiviroidae.

6.
Antibiotics (Basel) ; 10(6)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204644

RESUMO

Staphylococcus (S.) aureus is an important causative agent of wound infections with increasing incidence in the past decades. Specifically, the emergence of methicillin-resistant S. aureus (MRSA) causes serious problems, especially in nosocomial infections. Therefore, there is an urgent need to develop of alternative or supportive antimicrobial therapeutic modalities to meet these challenges. Purified compounds from hops have previously shown promising antimicrobial effects against MRSA isolates in vitro. In this study, purified beta-acids from hops were tested for their potential antimicrobial and healing properties using a porcine model of wounds infected by MRSA. The results show highly significant antimicrobial effects of the active substance in both the powder and Ambiderman-based application forms compared to both no-treatment control and treatment with Framycoin. Moreover, the macroscopic evaluation of the wounds during the treatment using the standardized Wound Healing Continuum indicated positive effects of the beta-acids on the overall wound healing. This is further supported by the microscopic data, which showed a clear improvement of the inflammatory parameters in the wounds treated by beta-acids. Thus, using the porcine model, we demonstrate significant therapeutic effects of hops compounds in the management of wounds infected by MRSA. Beta-acids from hops, therefore, represent a suitable candidate for the treatment of non-responsive nosocomial tissue infections by MRSA.

7.
Int J Mol Sci ; 21(1)2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905722

RESUMO

The hop plant (Humulus lupulus L.) produces several valuable secondary metabolites, such as prenylflavonoid, bitter acids, and essential oils. These compounds are biosynthesized in glandular trichomes (lupulin glands) endowed with pharmacological properties and widely implicated in the beer brewing industry. The present study is an attempt to generate exhaustive information of transcriptome dynamics and gene regulatory mechanisms involved in biosynthesis and regulation of these compounds, developmental changes including trichome development at three development stages, namely leaf, bract, and mature lupulin glands. Using high-throughput RNA-Seq technology, a total of 61.13, 50.01, and 20.18 Mb clean reads in the leaf, bract, and lupulin gland libraries, respectively, were obtained and assembled into 43,550 unigenes. The putative functions were assigned to 30,996 transcripts (71.17%) based on basic local alignment search tool similarity searches against public sequence databases, including GO, KEGG, NR, and COG families, which indicated that genes are principally involved in fundamental cellular and molecular functions, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in leaf, bract, and lupulin glands tissues of hop. The expression profile of transcript encoding enzymes of BCAA metabolism, MEP, and shikimate pathway was most up-regulated in lupulin glands compared with leaves and bracts. Similarly, the expression levels of the transcription factors and structural genes that directly encode enzymes involved in xanthohumol, bitter acids, and terpenoids biosynthesis pathway were found to be significantly enhanced in lupulin glands, suggesting that production of these metabolites increases after the leaf development. In addition, numerous genes involved in primary metabolism, lipid metabolism, photosynthesis, generation of precursor metabolites/energy, protein modification, transporter activity, and cell wall component biogenesis were differentially regulated in three developmental stages, suggesting their involvement in the dynamics of the lupulin gland development. The identification of differentially regulated trichome-related genes provided a new foundation for molecular research on trichome development and differentiation in hop. In conclusion, the reported results provide directions for future functional genomics studies for genetic engineering or molecular breeding for augmentation of secondary metabolite content in hop.


Assuntos
Humulus/química , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Tricomas/metabolismo , Flavonoides/biossíntese , Flavonoides/química , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Humulus/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/genética , Propiofenonas/química , Propiofenonas/metabolismo , RNA-Seq , Terpenos/química , Terpenos/metabolismo , Fatores de Transcrição/metabolismo , Tricomas/genética , Tricomas/ultraestrutura
8.
Plant Sci ; 269: 32-46, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29606215

RESUMO

Hop is an important source of medicinally valuable secondary metabolites including bioactive prenylated chalcones. To gain in-depth knowledge of the regulatory mechanisms of hop flavonoids biosynthesis, full-length cDNA of HlMyb8 transcription factor gene was isolated from lupulin glands. The deduced amino acid sequence of HlMyb8 showed high similarity to a flavonol-specific regulator of phenylpropanoid biosynthesis AtMYB12 from Arabidopsis thaliana. Transient expression studies and qRT-PCR analysis of transgenic hop plants overexpressing HlMyb8 revealed that HlMYB8 activates expression of chalcone synthase HlCHS_H1 as well as other structural genes from the flavonoid pathway branch leading to the production of flavonols (F3H, F'3H, FLS) but not prenylflavonoids (PT1, OMT1) or bitter acids (VPS, PT1). HlMyb8 could cross-activate Arabidopsis flavonol-specific genes but to a much lesser extent than AtMyb12. Reciprocally, AtMyb12 could cross-activate hop flavonol-specific genes. Transcriptome sequence analysis of hop leaf tissue overexpressing HlMyb8 confirmed the modulation of several other genes related to flavonoid biosynthesis pathways (PAL, 4CL, ANR, DFR, LDOX). Analysis of metabolites in hop female cones confirmed that overexpression of HlMyb8 does not increase prenylflavonoid or bitter acids content in lupulin glands. It follows from our results that HlMYB8 plays role in a competition between flavonol and prenylflavonoid or bitter acid pathways by diverting the flux of CHS_H1 gene product and thus, may influence the level of these metabolites in hop lupulin.


Assuntos
Flavonoides/biossíntese , Humulus/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Humulus/metabolismo , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
9.
Food Chem ; 252: 215-227, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29478534

RESUMO

Beta-bitter acids of hops (lupulones) revealed sedative and antidepressant-like effects in animal studies. Transformation of ß-acids during beer brewing leads to the formation of tricyclic transformation products, which have a close structural analogy to hyperforin. The latter compound is responsible for the antidepressant activity of St. John's wort by activation of TRPC6 cation channels in neuronal-like cells leading to Ca2+ influx. In this study, nortricyclolupones, dehydrotricyclolupones, and tricyclolupones were isolated from a wort-boiling model and their structures were elucidated by UHPLC-DAD, UHPLC-ESI--MS/MS and 1D/2D-NMR spectroscopy. Beta-bitter acids and their transformation products induced Ca2+ influx in PC12 cells to the same extent as hyperforin. Application of a Ca2+-free environment abolished the Ca2+ elevation, indicating that the increase is mediated by influx across the plasma membrane. Thus, activation of neuronal-like Ca2+-channels by lupulones and tricyclolupones represent a novel mechanism contributing to the antidepressant activity of hops.


Assuntos
Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Terpenos/metabolismo , Terpenos/farmacologia , Animais , Cálcio/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Transporte Proteico/efeitos dos fármacos , Ratos , Terpenos/química
10.
Plant Mol Biol ; 92(3): 263-77, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27392499

RESUMO

Lupulin glands localized in female hop (Humulus lupulus L.) cones are valuable source of bitter acids, essential oils and polyphenols. These compounds are used in brewing industry and are important for biomedical applications. In this study we describe the potential effect of transcription factors from WRKY family in the activation of the final steps of lupulin biosynthesis. In particular, lupulin gland-specific transcription factor HlWRKY1 that shows significant similarity to AtWRKY75, has ability to activate the set of promoters driving key genes of xanthohumol and bitter acids biosynthesis such as chalcone synthase H1, valerophenone synthase, prenyltransferase 1, 1L and 2 and O-methyltransferase-1. When combined with co-factor HlWDR1 and silencing suppressor p19, HlWRKY1 is able to enhance transient expression of gus gene driven by Omt1 and Chs_H1 promoters to significant level as compared to 35S promoter of CaMV in Nicotiana. benthamiana. Transformation of hop with dual Agrobacterium vector bearing HlWRKY1/HlWDR1 led to ectopic overexpression of these transgenes and further activation of lupulin-specific genes expression in hop leaves. It was further showed that (1) HlWRKY1 is endowed with promoter autoactivation; (2) It is regulated by post-transcriptional gene silencing (PTGS) mechanism; (3) It is stimulated by kinase co-expression. Since HlWRKY1 promotes expression of lupulin-specific HlMyb3 gene therefore it can constitute a significant component in hop lupulin regulation network. Putative involvement of HlWRKY1 in the regulation of lupulin biosynthesis may suggest the original physiological function of lupulin components in hop as flower and seed protective compounds.


Assuntos
Regulação da Expressão Gênica de Plantas , Humulus/genética , Humulus/metabolismo , Proteínas de Plantas/metabolismo , Terpenos , Fatores de Transcrição/metabolismo , Inativação Gênica/fisiologia , Humulus/enzimologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética
11.
Plant Cell Physiol ; 56(3): 428-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25416290

RESUMO

The female flower of hop (Humulus lupulus var. lupulus) is an essential ingredient that gives characteristic aroma, bitterness and durability/stability to beer. However, the molecular genetic basis for identifying DNA markers in hop for breeding and to study its domestication has been poorly established. Here, we provide draft genomes for two hop cultivars [cv. Saazer (SZ) and cv. Shinshu Wase (SW)] and a Japanese wild hop [H. lupulus var. cordifolius; also known as Karahanasou (KR)]. Sequencing and de novo assembly of genomic DNA from heterozygous SW plants generated scaffolds with a total size of 2.05 Gb, corresponding to approximately 80% of the estimated genome size of hop (2.57 Gb). The scaffolds contained 41,228 putative protein-encoding genes. The genome sequences for SZ and KR were constructed by aligning their short sequence reads to the SW reference genome and then replacing the nucleotides at single nucleotide polymorphism (SNP) sites. De novo RNA sequencing (RNA-Seq) analysis of SW revealed the developmental regulation of genes involved in specialized metabolic processes that impact taste and flavor in beer. Application of a novel bioinformatics tool, phylogenetic comparative RNA-Seq (PCP-Seq), which is based on read depth of genomic DNAs and RNAs, enabled the identification of genes related to the biosynthesis of aromas and flavors that are enriched in SW compared to KR. Our results not only suggest the significance of historical human selection process for enhancing aroma and bitterness biosyntheses in hop cultivars, but also serve as crucial information for breeding varieties with high quality and yield.


Assuntos
Cerveja , Genoma de Planta , Humulus/genética , Dieta , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Tamanho do Genoma , Humulus/metabolismo , Organelas/genética , Filogenia , Característica Quantitativa Herdável , Sequências Repetitivas de Ácido Nucleico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Análise de Sequência de RNA
12.
J Agric Food Chem ; 62(31): 7690-7, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25099125

RESUMO

Hops represent an important source of ß-acids with antimicrobial and sensory properties. Transformation products of ß-acids formed during their oxidation, mainly hulupones, have been shown to have an interesting kind of bitterness. Their structures were recently elucidated using LC-TOFMS and 1D/2D NMR in solution after thermal treatment of the hop ß-acids. This study demonstrates the advantages of MS detection with high resolution and accurate mass measurements. The structure of transformation products in an experimental solution of oxidized ß-acids was elucidated using a newly developed method by hybrid quadrupole-Orbitrap MS. In addition to already known structures, two new ones were identified and named epoxycohulupone and epoxyhulupone. The method was verified on real samples; the profiles of these products in Sládek hops harvested in 2008 and 2012 and in corresponding beers were compared. For this purpose, a new QuEChERS assay was used for the preparation of beer samples.


Assuntos
Cerveja/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Terpenos/análise , Humulus/química , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Oxirredução , Paladar , Terpenos/química
13.
Genome ; 53(7): 545-57, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20616876

RESUMO

Wild hops (Humulus lupulus L.) are potential new germplasms to expand the variability of genetic resources for hop breeding. We evaluated Canadian (62 plants) and Caucasian (58 plants) wild hops by their chemical characteristics and with molecular genetic analyses using sequence-tagged site and simple sequence repeat markers, in comparison with European (104 plants) and North American (27 plants) wild hops. The contents of alpha and beta acids varied from 0.36% to 5.11% and from 0.43% to 6.66% in Canadian wild hops, and from 0.85% to 3.65% and from 1.22% to 4.81% in Caucasian wild hops, respectively. The contents of cohumulone and colupulone distinctly differed between European and North American wild hops: the cohumulone level in alpha acids was in the range 46.1%-68.4% among North American wild hops and in the range 13.6%-30.6% among European wild hops. The high content of myrcene and the low contents of humulene, farnesene, and selinenes were typical for wild hops from Canada, in contrast to wild hops from the Caucasus region. We compared the chemical characteristics with molecular genetic data. Chemical characteristics differentiated wild hops into North American and Eurasian groups. Molecular genetic analysis was able to separate Caucasian wild hops from European wild hops. We proved a hop phylogeny by means of wide molecular analysis.


Assuntos
Cicloexanonas/metabolismo , Humulus/genética , Repetições Minissatélites/genética , Polimorfismo Genético/genética , Sitios de Sequências Rotuladas , Canadá , Sistema Enzimático do Citocromo P-450/metabolismo , Humulus/classificação , Humulus/metabolismo , Filogenia , Federação Russa
14.
J Agric Food Chem ; 58(2): 902-12, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20028133

RESUMO

Hop (Humulus lupulus L.), the essential source of beer flavor is of interest from a medicinal perspective in view of its high content in health-beneficial terpenophenolics including prenylflavonoids. The dissection of biosynthetic pathway(s) of these compounds in lupulin glands, as well as its regulation by transcription factors (TFs), is important for efficient biotechnological manipulation of the hop metabolome. TFs of the bZIP class were preselected from the hop transcriptome using a cDNA-AFLP approach and cloned from a cDNA library based on glandular tissue-enriched hop cones. The cloned TFs HlbZIP1A and HlbZIP2 have predicted molecular masses of 27.4 and 34.2 kDa, respectively, and both are similar to the group A3 bZIP TFs according to the composition of characteristic domains. While HlbZIP1A is rather neutral (pI 6.42), HlbZIP2 is strongly basic (pI 8.51). A truncated variant of HlbZIP1 (HlbZIP1B), which is strongly basic but lacks the leucine zipper domain, has also been cloned from hop. Similar to the previously cloned HlMyb3 from hop, both bZIP TFs show a highly specific expression in lupulin glands, although low expression was observed also in other tissues including roots and immature pollen. Comparative functional analyses of HlbZip1A, HlbZip2, and subvariants of HlMyb3 were performed in a transient expression system using Nicotiana benthamiana leaf coinfiltration with Agrobacterium tumefaciens strains bearing hop TFs and selected promoters fused to the GUS reference gene. Both hop bZIP TFs and HlMyb3 mainly activated the promoters of chalcone synthase chs_H1 and the newly cloned O-methyl transferase 1 genes, while the response of the valerophenone synthase promoter to the cloned hop TFs was very low. These analyses also showed that the cloned bZIP TFs are not strictly G-box-specific. HPLC analysis of secondary metabolites in infiltrated Petunia hybrida showed that both hop bZIP TFs interfere with the accumulation and the composition of flavonol glycosides, phenolic acids, and anthocyanins, suggesting the possibility of coregulating flavonoid biosynthetic pathways in hop glandular tissue.


Assuntos
Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Humulus/genética , Metaboloma , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Humulus/química , Humulus/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...