Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 20: 533-543, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508698

RESUMO

Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis.


Assuntos
Proteínas Culina/metabolismo , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estresse Fisiológico , Respiração Celular , Mitocôndrias/genética , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinação
2.
Methods ; 40(4): 344-52, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17101447

RESUMO

The use of the budding yeast Saccharomyces cerevisiae as a simple eukaryotic model system for the study of chromatin assembly and regulation has allowed rapid discovery of genes that influence this complex process. The functions of many of the proteins encoded by these genes have not yet been fully characterized. Here, we describe a high-throughput methodology that can be used to illuminate gene function and discuss its application to a set of genes involved in the creation, maintenance and remodeling of chromatin structure. Our technique, termed E-MAPs, involves the generation of quantitative genetic interaction maps that reveal the function and organization of cellular proteins and networks.


Assuntos
Cromatina/metabolismo , Epistasia Genética , Mapeamento de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina , Biologia Computacional , Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/metabolismo
3.
Proc Natl Acad Sci U S A ; 98(23): 12902-7, 2001 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-11687631

RESUMO

The trithorax genes encode an evolutionarily conserved family of proteins that function to maintain specific patterns of gene expression throughout cellular development. Members of this protein family contain a highly conserved 130- to 140-amino acid motif termed the SET domain. We report the purification and molecular identification of the subunits of a protein complex in the yeast Saccharomyces cerevisiae that includes the trithorax-related protein Set1. This protein complex, which we have named COMPASS (Complex Proteins Associated with Set1), consists of seven polypeptides ranging from 130 to 25 kDa. The same seven proteins were identified in COMPASS purified either by conventional biochemical chromatography or tandem-affinity tagging of the individual subunits of the complex. Null mutants missing any one of the six nonessential subunits of COMPASS grow more slowly than wild-type cells under normal conditions and demonstrate growth sensitivity to hydroxyurea. Furthermore, gene expression profiles of strains missing either of two nonessential subunits of COMPASS are altered in similar ways, suggesting these proteins have similar roles in gene expression in vivo. Molecular characterization of trithorax complexes will facilitate defining the role of this class of proteins in the regulation of gene expression and how their misregulation results in the development of human cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Cromatografia Líquida , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica , Inativação Gênica , Histona-Lisina N-Metiltransferase , Hidroxiureia/farmacologia , Mutação , Fenótipo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Telômero , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação
4.
Mol Cell Biol ; 21(23): 8203-12, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11689709

RESUMO

The Elongator complex associated with elongating RNA polymerase II in Saccharomyces cerevisiae was originally reported to have three subunits, Elp1, Elp2, and Elp3. Using the tandem affinity purification (TAP) procedure, we have purified a six-subunit yeast Holo-Elongator complex containing three additional polypeptides, which we have named Elp4, Elp5, and Elp6. TAP tapping and subsequent purification of any one of the six subunits result in the isolation of all six components. Purification of Elongator in higher salt concentrations served to demonstrate that the complex could be separated into two subcomplexes: one consisted of Elp1, -2, and -3, and the other consisted of Elp4, -5, and -6. Deletions of the individual genes encoding the new Elongator subunits showed that only the ELP5 gene is essential for growth. Disruption of the two nonessential new Elongator-encoding genes, ELP4 and ELP6, caused the same phenotypes observed with knockouts of the original Elongator-encoding genes. Results of microarray analyses demonstrated that the gene expression profiles of strains containing deletions of genes encoding subunits of either Elongator subcomplex, in which we detected significantly altered mRNA expression levels for 96 genes, are very similar, implying that all the Elongator subunits likely function together to regulate a group of S. cerevisiae genes in vivo.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Subunidades Proteicas , Fatores de Transcrição/fisiologia , Cromatografia de Afinidade , Deleção de Genes , Perfilação da Expressão Gênica , Substâncias Macromoleculares , Análise de Sequência com Séries de Oligonucleotídeos , Mapeamento de Peptídeos , Fenótipo , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Saccharomyces cerevisiae , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Regulação para Cima
5.
J Bacteriol ; 180(22): 5891-5, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9811646

RESUMO

The dum gene of Salmonella typhimurium was originally identified as a gene involved in dUMP synthesis (C. F. Beck et al., J. Bacteriol. 129:305-316, 1977). In the genetic background used in their selection, the joint acquisition of a dcd (dCTP deaminase) and a dum mutation established a condition of thymidine (deoxyuridine) auxotrophy. In this study, we show that dum is identical to pyrH, the gene encoding UMP kinase. The level of UMP kinase activity in the dum mutant was found to be only 30% of that observed for the dum+ strain. Thymidine prototrophy was restored to the original dum dcd mutant (KP1361) either by transduction using a pyrH+ donor or by complementation with either of two pyrH+-carrying plasmids. Thymidine auxotrophy could be reconstructed in the dum+ derivative (KP1389) by the introduction of a mutant pyrH allele. To define the minimal mutational complement necessary to produce thymidine auxotrophy in thyA+ strains, a dcd::Km null mutation was constructed. In the wild-type background, dcd::Km alone or in combination with a pyrH (dum) mutation did not result in a thymidine requirement. A third mutation, cdd (cytidine-deoxycytidine deaminase), was required together with the dcd and pyrH mutations to impart thymidine auxotrophy.


Assuntos
Citidina Desaminase/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Nucleotídeo Desaminases/metabolismo , Salmonella typhimurium/metabolismo , Timidina/biossíntese , Citidina Desaminase/genética , Mutagênese , Núcleosídeo-Fosfato Quinase/genética , Nucleotídeo Desaminases/genética , Salmonella typhimurium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...