Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 23(21): 27213-20, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26480381

RESUMO

A novel waveguide-coupled germanium p-i-n photodiode is demonstrated which combines high responsivity with very high -3 dB bandwidth at a medium dark current. Bandwidth values are 40 GHz at zero bias and more than 70 GHz at -1 V. Responsivity at 1.55 µm wavelength ranges from 0.84 A/W at zero bias to 1 A/W at -1 V. Room temperature dark current density at -1 V is about 1 A/cm2. The high responsivity mainly results from the use of a new, low-loss contact scheme, which moreover also reduces the negative effect of photo carrier diffusion on bandwidth.

2.
Opt Express ; 19(26): B166-72, 2011 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22274014

RESUMO

A dual-quadrature coherent receiver based on a polymer planar lightwave circuit (PLC) is presented. This receiver comprises two separate optical 90°-hybrid chips made of polymer waveguides and hybridly integrated with InGaAs/InP photodiode (PD) arrays. The packaged receiver was successfully operated in 112 Gbit/s dual-polarization quadrature phase-shift keying (QPSK) transmission experiments. In back-to-back configuration the OSNR requirement for a BER value of 10(-3) was 15.1 dB which has to be compared to a theoretical limit of 13.8 dB.

3.
Opt Express ; 14(3): 1119-24, 2006 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19503434

RESUMO

The performance of an external-cavity mode-locked semiconductor laser is investigated both theoretically and experimentally. The optimization analysis focuses on the regimes of stable mode locking and the generation of sub-picosecond optical pulses. We demonstrate stable output pulses down to one picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model.We find that ultrafast gain dynamics effectively reduce the pulse-shaping strength and inhibit the generation of femtosecond optical pulses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...