Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(14): 3777-3780, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37450748

RESUMO

A novel, to the best of our knowledge, compact, imaging-free, tilted-pulse-front (TPF) pumped terahertz (THz) source based on a LiNbO3 slab with a small wedge angle (< 8°) and with an echelon microstructure on its input surface has been demonstrated. Single-cycle pulses of more than 40-µJ energy and 0.28-THz central frequency have been generated by 100-mJ, 400-fs pump pulses with 4.1 × 10-4 efficiency and excellent focusability. The peak electric field value focused by a single parabolic mirror was 540 kV/cm. Using 200-fs-long pump pulses, the efficiency increased to 1.0 × 10-3, which is in qualitative agreement with the measured increased diffraction efficiency in the velocity matched diffraction order. A further ∼8x increase in efficiency is expected by pumping a cryogenically cooled wedged echelon with appropriate step sizes, better microstructured surface quality, and antireflection coating on both the input and the output sides. THz generation efficiency maxima were found at ∼2.7-mm crystal thickness for both pump pulse durations. The focused THz beam was diffraction limited within 5% accuracy. Compared to conventional THz sources, this setup is very compact, easy to align, can be pumped by larger beam sizes maintaining the high THz generation efficiency, and produces THz pulses with superior focusability.


Assuntos
Diagnóstico por Imagem , Eletricidade , Frequência Cardíaca
2.
Opt Express ; 30(14): 24186-24206, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236979

RESUMO

Despite the popularity and ubiquity of the tilted-pulse-front technique for single-cycle terahertz (THz) pulse generation, there is a deficit of experimental studies comprehensively mapping out the dependence of the performance on key setup parameters. The most critical parameters include the pulse-front tilt, the effective length of the pump pulse propagation within the crystal as well as effective length over which the THz beam interacts with the pump before it spatially walks off. Therefore, we investigate the impact of these parameters on the conversion efficiency and the shape of the THz beam via systematically scanning the 5D parameter space spanned by pump fluence, pulse-front-tilt, crystal-position (2D), and the pump size experimentally. We verify predictions so far only made by theory regarding the optimum interaction lengths and map out the impact of cascading on the THz radiation generation process. Furthermore, distortions imposed on the spatial THz beam profile for larger than optimum interaction lengths are observed. Finally, we identify the most sensitive parameters and, based on our findings, propose a robust optimization strategy for tilted-pulse-front THz setups. These findings are relevant for all THz strong-field applications in high demand of robust high-energy table-top single-cycle THz sources such as THz plasmonics, high-harmonic generation in solids as well as novel particle accelerators and beam manipulators.

3.
Opt Express ; 26(13): 16955-16969, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30119513

RESUMO

We systematically study the efficiency enhancement of high-harmonic generation (HHG) in an Ar gas cell up to the soft X-ray (SXR) range using a two-color laser field composed of 2.1 µm (ω) and 700 nm (3ω) with parallel linear polarization. Our experiment follows the recent theoretical investigations that determined two-color mid-infrared (IR) pulses, mixed with their third harmonic (ω + 3ω), to be close to optimal driving waveforms for enhancing HHG efficiency in the SXR region [Jin et al., Nature Comm. 5, 4003 (2014)]. We observed sub-optical-cycle-dependent efficiency enhancements of up to 8.2 of photon flux integrated between 20 - 70 eV, and up to 2.2 between 85 - 205 eV. Enhancement of HHG efficiency was most pronounced for the lowest tested backing pressure (≈ 140 mbar), and decreased monotonically as the pressure was increased. The single-color (ω)-driven HHG was optimal at the highest backing pressure tested in the experiment (≈ 375 mbar). Our numerical simulations based on single-atom response and 3D pulse propagation show good qualitative agreement with experimental observations. The lower enhancement at high pressure and higher photon energy indicates that phase matching of two-color-driven HHG is more sensitive to ionization rate and pulse propagation effects than the single-color case. We show that with further improvements to the relative phase jitter and the spatio-temporal overlap of the two beams, the efficiency enhancement could be further improved by at least a factor of ≈ 2.

4.
Opt Lett ; 43(6): 1335-1338, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543285

RESUMO

We report on a femtosecond ∼8.5 µm, ∼2 µJ source based on the intrapulse difference-frequency generation (DFG) of 2.1 µm pulses in an AgGaSe2 (AGSe) crystal. Compared to the conventional ∼0.8 or 1 µm near-infrared (IR) pulses, a ∼2 µm driver for intrapulse DFG can provide more efficient conversion into the wavelengths longer than 5 µm due to a lower quantum defect and is more suitable for the non-oxide nonlinear crystals that have a relatively low bandgap energy. Using 26 fs, 2.1 µm pulses for type-II intrapulse DFG, we have generated intrinsically carrier-envelope phase-stable idler pulses with a conversion efficiency of 0.8%, which covers the wavelength range of 7-11 µm. Our simulation study shows that the blueshift of intrapulse DFG is assisted by self-phase modulation of the driving pulses in AGSe. The idler pulses are particularly useful for strong-field experiments in nanostructures, as well as for seeding parametric amplifiers in the long-wavelength IR.

5.
Nat Commun ; 8(1): 141, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747675

RESUMO

High-energy phase-stable sub-cycle mid-infrared pulses can provide unique opportunities to explore phase-sensitive strong-field light-matter interactions in atoms, molecules and solids. At the mid-infrared wavelength, the Keldysh parameter could be much smaller than unity even at relatively modest laser intensities, enabling the study of the strong-field sub-cycle electron dynamics in solids without damage. Here we report a high-energy sub-cycle pulse synthesiser based on a mid-infrared optical parametric amplifier and its application to high-harmonic generation in solids. The signal and idler combined spectrum spans from 2.5 to 9.0 µm. We coherently synthesise the passively carrier-envelope phase-stable signal and idler pulses to generate 33 µJ, 0.88-cycle, multi-gigawatt pulses centred at ~4.2 µm, which is further energy scalable. The mid-infrared sub-cycle pulse is used for driving high-harmonic generation in thin silicon samples, producing harmonics up to ~19th order with a continuous spectral coverage due to the isolated emission by the sub-cycle driver.Stable sub-cycle pulses in the mid-infrared region allow damage-free investigation of electron dynamics in solids. Here, the authors develop a suitable source to this end which is based on an optical parametric amplifier.

6.
Opt Lett ; 42(11): 2118-2121, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569860

RESUMO

We generate narrowband terahertz (THz) radiation in periodically poled lithium niobate (PPLN) crystals using two chirped-and-delayed driver pulses from a high-energy Ti:sapphire laser. The generated frequency is determined by the phase-matching condition in the PPLN and influences the temporal delay of the two pulses for efficient terahertz generation. We achieve internal conversion efficiencies up to 0.13% as well as a record multicycle THz energy of 40 µJ at 0.544 THz in a cryogenically cooled PPLN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...