Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38391458

RESUMO

The aim of the study was to produce biocomposites based on chitosan and sodium hyaluronate hydrogels supplemented with bioglasses obtained under different conditions (temperature, time) and to perform an in vitro evaluation of their cytocompatibility using both indirect and direct methods. Furthermore, the release of ions from the composites and the microstructure of the biocomposites before and after incubation in simulated body fluid were assessed. Tests on extracts from bioglasses and hydrogel biocomposites were performed on A549 epithelial cells, while MG63 osteoblast-like cells were tested in direct contact with the developed biomaterials. The immune response induced by the biomaterials was also evaluated. The experiments were carried out on both unstimulated and lipopolysaccharide (LPS) endotoxin-stimulated human peripheral blood cells in the presence of extracts of the biocomposites and their components. Extracts of the materials produced do not exhibit toxic effects on A549 cells, and do not increase the production of proinflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin (IL-6) by blood cells in vitro. In direct contact with MG63 osteoblast-like cells, biocomposites containing the reference bioglass and those containing SrO are more cytocompatible than biocomposites with ZnO-doped bioglass. Using two testing approaches, the effects both of the potentially toxic agents released and of the surface of the tested materials on the cell condition were assessed. The results pave the way for the development of highly porous hydrogel-bioglass composite scaffolds for bone tissue engineering.

2.
J Agric Food Chem ; 71(41): 15017-15034, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37791532

RESUMO

A comprehensive oxidation mechanism was investigated for amaranthin-type betacyanins with a specific glucuronosylglucosyl moiety isolated from Atriplex hortensis 'rubra' using liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry (LC-DAD-ESI-MS/MS) and LC-Quadrupole-Orbitrap-MS (LC-Q-Orbitrap-MS). By employing one-dimensional (1D) and two-dimensional (2D) NMR, this study elucidates the chemical structures of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS)-oxidized celosianins for the first time. These findings demonstrate alternative oxidation pathways for acylated betacyanins compared to well-known betanidin, betanin, and gomphrenin pigments. Contrary to previous research, we uncover the existence of 17-decarboxy-neo- and 2,17-bidecarboxy-xanneo-derivatives as the initial oxidation products without the expected 2-decarboxy-xan forms. These oxidized compounds demonstrated potent free radical scavenging properties. Celosianin (IC50 = 23 µg/mL) displayed slightly higher antioxidant activity compared to oxidized forms, 17-decarboxy-neocelosianin (IC50 = 34 µg/mL) and 2,17-bidecarboxy-xanneocelosianin (IC50 = 29 µg/mL). The oxidized compounds showed no cytotoxic effects on H9c2 rat cardiomyoblasts (0.1-100 µg/mL). Additionally, treatment of H9c2 cells with the oxidized compounds (0.1-10 µg/mL) elevated glutathione levels and exhibited protective effects against H2O2-induced cell death. These findings have significant implications for understanding the impact of oxidation processes on the structures and biological activities of acylated betalains, providing valuable insights for future studies of the bioavailability and biological mechanism of their action in vivo.


Assuntos
Atriplex , Betacianinas , Animais , Ratos , Betacianinas/farmacologia , Betacianinas/química , Antioxidantes/farmacologia , Antioxidantes/química , Spinacia oleracea , Espectrometria de Massas em Tandem , Peróxido de Hidrogênio , Cromatografia Líquida de Alta Pressão/métodos
3.
Polymers (Basel) ; 15(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37836043

RESUMO

The development of innovative biomaterials with improved integration with bone tissue and stimulating regeneration processes is necessary. Here, we evaluate the usefulness of bioactive glasses from the SiO2-P2O5-CaO system enriched with 2 wt.% SrO or ZnO in the manufacturing of chitosan-based scaffolds. Bioglasses produced using the sol-gel method were subjected to thermal treatment in different regimes. Chitosan/bioglass composites were produced with a weight ratio. Bioglasses were evaluated via TG-DTA, FTIR, and SEM-EDS before and after incubation in simulated body fluid (SBF). The release of ions was tested. The cytocompatibility of the composites in contact with MG63 osteoblast-like cells was evaluated. The results showed that the presence of the crystalline phase decreased from 41.2-44.8% for nonmodified bioglasses to 24.2-24.3% for those modified with ZnO and 22.0-24.2% for those modified with SrO. The samples released Ca2+, Zn2+, and/or Sr2+ ions and were bioactive according to the SBF test. The highest cytocompatibility was observed for the composites containing nonmodified bioglasses, followed by those enriched with SrO bioglasses. The least cytocompatible were the composites containing ZnO bioglasses that released the highest amount of Zn2+ ions (0.58 ± 0.07 mL/g); however, those that released 0.38 ± 0.04 mL/g were characterised by acceptable cytocompatibility. The study confirmed that it is feasible to control the biological performance of chitosan/bioglass composites by adjusting the composition and heat treatment parameters of bioglasses.

4.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176107

RESUMO

Implant-related infections are a worldwide issue that is considered very challenging. Conventional therapies commonly end up failing; thus, new solutions are being investigated to overcome this problem. The in situ delivery of the drug at the implant site appears to be more sufficient compared to systemic antibiotic therapy. In this study, we manufactured porous zirconia scaffolds using the foam replication method. To improve their overall bioactivity, they were coated with a calcium phosphate (CaP) layer containing antibiotic-loaded degradable polymer nanoparticles (NPs) obtained by the double emulsion method to achieve the antibacterial effect additionally. Encapsulation efficiency (EE) and drug loading (DL) were superior and were equal to 99.9 ± 0.1% and 9.1 ± 0.1%, respectively. Scaffolds were analyzed with scanning electron microscopy, and their porosity was evaluated. The porosity of investigated samples was over 90% and resembled the microstructure of spongy bone. Furthermore, we investigated the cytocompatibility with osteoblast-like MG-63 cells and antimicrobial properties with Staphylococcus aureus. Scaffolds coated with a CaP layer were found non-toxic for MG-63 cells. Moreover, the presence of antibiotic-loaded nanoparticles had no significant influence on cell viability, and the obtained scaffolds inhibited bacteria growth. Provided processes of fabrication of highly porous zirconia scaffolds and surface functionalization allow minimizing the risk of implant-related infection.


Assuntos
Nanopartículas , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Porosidade , Gentamicinas/farmacologia , Antibacterianos/farmacologia , Nanopartículas/química , Fosfatos de Cálcio/química
5.
ACS Appl Mater Interfaces ; 15(17): 21699-21718, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083334

RESUMO

Aseptic loosening and periprosthetic infections are complications that can occur at the interface between inert ceramic implants and natural body tissues. Therefore, the need for novel materials with antibacterial properties to prevent implant-related infection is evident. This study proposes multifunctionalizing the inert ceramic implant surface by biomimetic calcium phosphate (CaP) coating decorated with antibiotic-loaded nanoparticles for bioactivity enhancement and antibacterial effect. This study aimed to coat zirconium dioxide (ZrO2) substrates with a bioactive CaP-layer containing drug-loaded degradable polymer nanoparticles (NPs). The NPs were loaded with two antibiotics, gentamicin or bacitracin. The immobilization of NPs happened by two deposition methods: coprecipitation and drop-casting. X-ray diffraction (XRD), scanning electron microscopy (SEM), and cross-section analyses were used to characterize the coatings. MG-63 osteoblast-like cells and human mesenchymal stem cells (hMSC) were chosen for in vitro tests. Antibacterial activity was assessed with S. aureus and E. coli. The coprecipitation method allowed for a favorable homogeneous distribution of the NPs within the CaP coating. The CaP coating was constituted of hydroxyapatite and octacalcium phosphate; its thickness was 3.8 ± 1 µm with cavities of around 1 µm suitable for hosting NPs with a size of 200 nm. Antibiotics were released from the coatings in a controlled manner for 1 month. The cell culture study has confirmed the excellent behavior of the coprecipitated coating, showing cytocompatibility and a homogeneous distribution of the cells on the coated surfaces. The increase in alkaline phosphatase activity showed osteogenic differentiation. The materials were found to inhibit the growth of bacteria. Newly developed coatings with antibacterial and bioactive properties are promising candidates to prevent peri-implant infectious bone diseases.


Assuntos
Antibacterianos , Nanopartículas , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Osteogênese , Staphylococcus aureus , Biomimética , Escherichia coli , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Cerâmica/farmacologia , Propriedades de Superfície , Titânio/química
6.
Food Chem ; 414: 135641, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36809729

RESUMO

Atriplex hortensis var. rubra L. extracts prepared from leaves, seeds with sheaths, and stems were characterized for betalainic profiles by spectrophotometry, LC-DAD-ESI-MS/MS and LC-Orbitrap-MS techniques. The presence of 12 betacyanins in the extracts was strongly correlated with high antioxidant activity measured by ABTS, FRAP, and ORAC assays. Comparative assessment between samples indicated the highest potential for celosianin and amaranthin (IC50 21.5 and 32.2 µg/ml, respectively). The chemical structure of celosianin was elucidated for the first time by complete 1D and 2D NMR analysis. Our findings also demonstrate that betalain-rich A. hortensis extracts and purified pigments (amaranthin and celosianin) do not induce cytotoxicity in a wide concentration range in rat cardiomyocytes model (up to 100 µg/ml for extracts and 1 mg/ml for pigments). Furthermore, tested samples effectively protect H9c2 cells from H2O2-induced cell death and prevent from apoptosis induced by Paclitaxel. The effects were observed at sample concentrations between 0.1 and 10 µg/ml.


Assuntos
Atriplex , Betalaínas , Animais , Ratos , Betalaínas/farmacologia , Betalaínas/química , Antioxidantes/química , Espectrometria de Massas em Tandem , Peróxido de Hidrogênio , Extratos Vegetais/farmacologia , Extratos Vegetais/química
8.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292955

RESUMO

Bone infections are a serious problem to cure, as systemic administration of antibiotics is not very effective due to poor bone vascularization. Therefore, many drug delivery systems are investigated to solve this problem. One of the potential solutions is the delivery of antibiotics from poly(L-actide-co-glycolide) (PLGA) nanoparticles suspended in the gellan gum injectable hydrogel. However, the loading capacity and release kinetics of the system based on hydrophilic drugs (e.g., gentamycin) and hydrophobic polymers (e.g., PLGA) may not always be satisfying. To solve this problem, we decided to use hydrophobized gentamycin obtained by ion-pairing with dioctyl sulfosuccinate sodium salt (AOT). Herein, we present a comparison of the PLGA nanoparticles loaded with hydrophobic or hydrophilic gentamycin and suspended in the hydrogel in terms of physicochemical properties, drug loading capacity, release profiles, cytocompatibility, and antibacterial properties. The results showed that hydrophobic gentamycin may be combined in different formulations with the hydrophilic one and is superior in terms of encapsulation efficiency, drug loading, release, and antibacterial efficacy with no negative effect on the NPs morphology or hydrogel features. However, the cytocompatibility of hydrophobic gentamycin might be lower, consequently more extensive study on its biological properties should be provided to evaluate a safe dose.


Assuntos
Nanopartículas , Ácido Poliglicólico , Ácido Poliglicólico/química , Gentamicinas/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Antibacterianos/farmacologia , Antibacterianos/química , Ácido Láctico/química , Portadores de Fármacos/química , Ácido Dioctil Sulfossuccínico , Nanopartículas/química , Hidrogéis , Osso e Ossos , Sódio , Tamanho da Partícula , Sistemas de Liberação de Medicamentos
9.
J Funct Biomater ; 13(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35076515

RESUMO

Bone tissue defects resulting from periodontal disease are often treated using guided tissue regeneration (GTR). The barrier membranes utilized here should prevent soft tissue infiltration into the bony defect and simultaneously support bone regeneration. In this study, we designed a degradable poly(l-lactide-co-glycolide) (PLGA) membrane that was surface-modified with cell adhesive arginine-glycine-aspartic acid (RGD) motifs. For a novel method of membrane manufacture, the RGD motifs were coupled with the non-ionic amphiphilic polymer poly(2-oxazoline) (POx). The RGD-containing membranes were then prepared by solvent casting of PLGA, POx coupled with RGD (POx_RGD), and poly(ethylene glycol) (PEG) solution in methylene chloride (DCM), followed by DCM evaporation and PEG leaching. Successful coupling of RGD to POx was confirmed spectroscopically by Raman, Fourier transform infrared in attenuated reflection mode (FTIR-ATR), and X-ray photoelectron (XPS) spectroscopy, while successful immobilization of POx_RGD on the membrane surface was confirmed by XPS and FTIR-ATR. The resulting membranes had an asymmetric microstructure, as shown by scanning electron microscopy (SEM), where the glass-cured surface was more porous and had a higher surface area then the air-cured surface. The higher porosity should support bone tissue regeneration, while the air-cured side is more suited to preventing soft tissue infiltration. The behavior of osteoblast-like cells on PLGA membranes modified with POx_RGD was compared to cell behavior on PLGA foil, non-modified PLGA membranes, or PLGA membranes modified only with POx. For this, MG-63 cells were cultured for 4, 24, and 96 h on the membranes and analyzed by metabolic activity tests, live/dead staining, and fluorescent staining of actin fibers. The results showed bone cell adhesion, proliferation, and viability to be the highest on membranes modified with POx_RGD, making them possible candidates for GTR applications in periodontology and in bone tissue engineering.

10.
Materials (Basel) ; 14(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34771898

RESUMO

The goal of this study is to investigate the influence of different types of modifiers, such as sodium hyaluronate (NaH), graphene oxide (GO), silica oxycarbide (SiOC) and oxidation process (ox) on physicochemical, morphological, and biological properties of electrospun carbon nanofibers (eCNFs). Scanning electron microscopy, X-ray photoelectron spectroscopy and infrared spectroscopy (FTIR) were used to evaluate the microstructure and chemistry of as-prepared and modified CNFs. The electrical properties of CNFs scaffolds were examined using a four-point probe method to evaluate the influence of modifiers on the volume conductivity and surface resistivity of the obtained samples. The wettability of the surfaces of modified and unmodified CNFs scaffolds was also tested by contact angle measurement. During the in vitro study all samples were put into direct contact with human chondrocyte CHON-001 cells and human osteosarcoma MG-63 cells. Their viability was analysed after 72 h in culture. Moreover, the cell morphology and cell area in contact with CNFs was observed by means of fluorescence microscopy. The obtained results show great potential for the modification of CNFs with polymer, ceramic and carbon modifiers, which do not change the fiber form of the substrate but significantly affect their surface and volume properties. Preliminary biological studies have shown that the type of modification of CNFs affects either the rate of increase in the number of cells or the degree of spreading in relation to the unmodified sample. More hydrophilic and low electrically conductive samples such as CNF_ox and CNF_NaH significantly increase cell proliferation, while other GO and SiOC modified samples have an effect on cell adhesion and thus cell spreading. From the point of view of further research and the possibility of combining the electrical properties of modified CNF scaffolds with electrical stimulation, where these scaffolds would be able to transport electrical signals to cells and thus affect cell adhesion, spreading, and consequently tissue regeneration, samples CNF_GO and CNF_SiOC would be the most desirable.

11.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360672

RESUMO

Modular tissue engineering (MTE) is a novel "bottom-up" approach to create engineered biological tissues from microscale repeating units. Our aim was to obtain microtissue constructs, based on polymer microspheres (MSs) populated with cells, which can be further assembled into larger tissue blocks and used in bone MTE. Poly(L-lactide-co-glycolide) MS of 165 ± 47 µm in diameter were produced by oil-in-water emulsification and treated with 0.1 M NaOH. To improve cell adhesion, MSs were coated with poly-L-lysine (PLL) or human recombinant collagen type I (COL). The presence of oxygenated functionalities and PLL/COL coating on MS was confirmed by X-ray photoelectron spectroscopy (XPS). To assess the influence of medium composition on adhesion, proliferation, and osteogenic differentiation, preosteoblast MC3T3-E1 cells were cultured on MS in minimal essential medium (MEM) and osteogenic differentiation medium (OSG). Moreover, to assess the potential osteoblast-osteoclast cross-talk phenomenon and the influence of signaling molecules released by osteoclasts on osteoblast cell culture, a medium obtained from osteoclast culture (OSC) was also used. To impel the cells to adhere and grow on the MS, anti-adhesive cell culture plates were utilized. The results show that MS coated with PLL and COL significantly favor the adhesion and growth of MC3T3-E1 cells on days 1 and 7, respectively, in all experimental conditions tested. On day 7, three-dimensional MS/cell/extracellular matrix constructs were created owing to auto-assembly. The cells grown in such constructs exhibited high activity of early osteogenic differentiation marker, namely, alkaline phosphatase. Superior cell growth on PLL- and COL-coated MS on day 14 was observed in the OSG medium. Interestingly, deposition of extracellular matrix and its mineralization was particularly enhanced on COL-coated MS in OSG medium on day 14. In our study, we developed a method of spontaneous formation of organoid-like MS-based cell/ECM constructs with a few millimeters in size. Such constructs may be regarded as building blocks in bone MTE.


Assuntos
Osso e Ossos/citologia , Matriz Extracelular/química , Microesferas , Osteoblastos/citologia , Osteogênese , Polímeros/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Camundongos , Alicerces Teciduais/química
12.
Dent Mater ; 37(1): 10-18, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248807

RESUMO

OBJECTIVE: Zirconia is commonly used for manufacturing of dental implants thanks to its excellent mechanical, biological and aesthetic properties. However, its bioinertness inhibits bonding with the surrounding hard tissue and other surface interactions. In our study, we present a method for multifunctionalization of zirconia surface to improve its osseointegration and to minimize the infection risks. METHODS: For this reason, we introduced antibacterial and bioactive properties to zirconia surfaces by calcium phosphate biomimetic coating. The samples were incubated in vials in horizontal and vertical position in concentrated simulated body fluid (SBF) containing 0.1, 0.5, and 3 g/L of silver nanoparticles (Ag-NPs) and then were tested for their structure, surface properties, cytocompatibility and antibacterial properties. RESULTS AND SIGNIFICANCE: The results demonstrated that our method is suitable to introduce Ag-NPs at different concentrations into the calcium phosphate layer, i.e. from 0.05-26.6 atom% as shown by EDX. According to the results of CFU-assay these coatings exhibited antibacterial properties against S. aureus and E. coli in correlation with the concentration of Ag-NP. The potential cytotoxicity of the coated samples was determined by AlamarBlue® assay and live/dead staining of MG63 osteoblast-like cells in direct contact and by testing the extracts from the materials. Only samples containing 0.05 atom% Ag-NPs, i.e. incubated in vertical position at SBF with 0.01 g/L Ag-NPs, were found cytocompatible in direct contact with MG63 cells. On the contrary in the indirect tests, the extracts from all the materials were found cytocompatible. This method could allow developing the completely new material group, exhibiting not only one but several biological properties, which can improve osseointegration and minimize infection risks.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Biomimética , Fosfatos de Cálcio/farmacologia , Cerâmica , Materiais Revestidos Biocompatíveis , Escherichia coli , Prata/farmacologia , Staphylococcus aureus , Propriedades de Superfície , Zircônio
13.
Polymers (Basel) ; 12(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207553

RESUMO

Highly porous, elastic, and degradable polyurethane and polyurethane/polylactide (PU/PLDL) sponges, in various shapes and sizes, with open interconnected pores, and porosity up to 90% have been manufactured. They have been intended for gap filling in the injured spinal cord. The porosity of the sponges depended on the content of polylactide, i.e., it decreased with the increase of polylactide content. The rise of polylactide content caused an increase of Young modulus and rigidity as well as a more complex morphology of the polyurethane/polylactide blends. The mechanical properties, in vitro toxicity, and degradation in artificial cerebrospinal fluid were tested. Sponges underwent continuous degradation with varying degradation rates depending on the polymer composition. In vitro cell studies with fibroblast cultures proved the biocompatibility of the polymers. Based on the obtained results, the designed PU/PLDL sponges appeared to be promising candidates for bridging gaps within injured spinal cord in further in vitro and in vivo studies.

14.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066080

RESUMO

Poly(l-lactide-co-glycolide) (PLGA) porous scaffolds were modified with collagen type I (PLGA/coll) or hydroxyapatite (PLGA/HAp) and implanted in rabbits osteochondral defects to check their biocompatibility and bone tissue regeneration potential. The scaffolds were fabricated using solvent casting/particulate leaching method. Their total porosity was 85% and the pore size was in the range of 250-320 µm. The physico-chemical properties of the scaffolds were evaluated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), sessile drop, and compression tests. Three types of the scaffolds (unmodified PLGA, PLGA/coll, and PLGA/HAp) were implanted into the defects created in New Zealand rabbit femoral trochlears; empty defect acted as control. Samples were extracted after 1, 4, 12, and 26 weeks from the implantation, evaluated using micro-computed tomography (µCT), and stained by Masson-Goldner and hematoxylin-eosin. The results showed that the proposed method is suitable for fabrication of highly porous PLGA scaffolds. Effective deposition of both coll and HAp was confirmed on all surfaces of the pores through the entire scaffold volume. In the in vivo model, PLGA and PLGA/HAp scaffolds enhanced tissue ingrowth as shown by histological and morphometric analyses. Bone formation was the highest for PLGA/HAp scaffolds as evidenced by µCT. Neo-tissue formation in the defect site was well correlated with degradation kinetics of the scaffold material. Interestingly, around PLGA/coll extensive inflammation and inhibited tissue healing were detected, presumably due to immunological response of the host towards collagen of bovine origin. To summarize, PLGA scaffolds modified with HAp are the most promising materials for bone tissue regeneration.


Assuntos
Osteocondrose/cirurgia , Poliglactina 910/química , Alicerces Teciduais/química , Animais , Regeneração Óssea , Colágeno/química , Hidroxiapatitas/química , Porosidade , Coelhos , Alicerces Teciduais/efeitos adversos
15.
Mater Sci Eng C Mater Biol Appl ; 115: 111098, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32600702

RESUMO

This paper reports on the plasma electrolytic oxidation (PEO) of titanium alloy Ti-15Mo in baths containing zinc to obtain biomaterials with bacteriostatic and antibacterial properties. The Ti-15Mo surface was oxidised in a 0.1 M Ca(H2PO2)2 bath containing zinc compound particles: ZnO or Zn3(PO4)2. During the PEO process, the applied voltage was 300 V, and the current density was 150 mA∙cm-2. The surface morphology, roughness and wettability were determined. It has been noted that both roughness and wettability of Ti-15Mo alloy surface increased after PEO. EDX and XPS chemical composition analysis was carried out, and Raman spectroscopy was also performed indicating that Zn has been successfully incorporated into oxide layer. To investigate the antibacterial properties of the PEO oxide coatings, microbial tests were carried out. The bacterial adhesion test was performed using four different bacterial strains: reference Staphylococcus aureus (ATCC 25923), clinical Staphylococcus aureus (MRSA 1030), reference Staphylococcus epidermidis (ATCC 700296) and clinical Staphylococcus epidermidis (15560). Performed zinc-containing oxide coatings did not indicate the bacteria growth inducing effect. Additionally, the cytocompatibility of the formed oxide layers was characterised by MG-63 osteoblast-like live/dead tests. The surface bioactivity and cytocompatibility increased after the PEO process. The zinc was successfully incorporated into the titanium oxide layer. Based on the obtained results of the studies, it can be claimed that zinc-containing PEO layers can be an interesting course of bacteriostatic titanium biomaterials development.


Assuntos
Ligas/farmacologia , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Fosfatos/química , Compostos de Zinco/química , Óxido de Zinco/química , Ligas/química , Antibacterianos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Osteoblastos/classificação , Osteoblastos/efeitos dos fármacos , Análise Espectral Raman , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Molhabilidade
16.
Bioact Mater ; 5(3): 709-720, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32478204

RESUMO

This paper describes a formation of hybrid coatings on a Ti-2Ta-3Zr-36Nb surface. This is accomplished by plasma electrolytic oxidation and a dip-coating technique with poly(adipic anhydride) ((C6H8O3)n) that is loaded with drugs: amoxicillin (C16H19N3O5S), cefazolin (C14H14N8O4S3) or vancomycin (C66H75Cl2N9O24 · xHCl). The characteristic microstructure of the polymer was evaluated using scanning electron microscopy and confocal microscopy. Depending on the surface treatment, the surface roughness varied (between 1.53 µm and 2.06 µm), and the wettability was change with the over of time. X-ray photoelectron spectroscopy analysis showed that the oxide layer did not affect the polymer layer or loaded drugs. However, the drugs lose their stability in a phosphate-buffered saline solution after 6.5 h of exposure, and its decrease was greater than 7% (HPLC analysis). The stability, drug release and concentration of the drug loaded into the material were precisely analyzed by high-performance liquid chromatography. The results correlated with the degradation of the polymer in which the addition of drugs caused the percent of degraded polymer to be between 35.5% and 49.4% after 1 h of material immersion, depending on the mass of the loaded drug and various biological responses that were obtained. However, all of the coatings were cytocompatible with MG-63 osteoblast-like cells. The drug concentrations released from the coatings were sufficient to inhibit adhesion of reference and clinical bacterial strains (S. aureus). The coatings with amoxicillin showed the best results in the bacterial inhibition zone, whereas coatings with cefazolin inhibited adhesion of the above bacteria on the surface.

17.
Bioact Mater ; 5(3): 553-563, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32373761

RESUMO

Oxide-polymer coatings were formed on the surface of the vanadium-free Ti-15Mo titanium alloy. The Ti alloy surface was modified by the plasma electrolytic oxidation process, and then, the polymer layer of a poly (D, l-lactide-co-glycolide) with doxycycline was formed. The polymer evenly covered the porous oxide layer and filled some of the pores. However, the microstructure of the polymer surface was completely different from that of the PEO layer. The surface morphology, roughness and microstructure of the polymer layer were examined by scanning electron microscopy (SEM) and a confocal microscope. The results confirmed the effectiveness of polymer and doxycycline deposition in their stable chemical forms. The drug analysis was performed by high-performance liquid chromatography. The 1H NMR technique was used to monitor the course of hydrolytic degradation of PLGA. It was shown that the PLGA layer is hydrolysed within a few weeks, and the polyglycolidyl part of the copolymer is hydrolysed to glycolic acid as first and much faster than the polylactide one to lactic acid. This paper presents influence of different microstructures on the biological properties of modified titanium alloys. Cytocompatibility and bacterial adhesion tests were evaluated using osteoblast-like MG-63 cells and using the reference S. aureus and S. epidermidis strains. The results showed that the optimum concentration of doxycycline was found to inhibit the growth of the bacteria and that the layer is still cytocompatible.

18.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230916

RESUMO

In this study, hierarchical, cylindrical scaffolds based on polylactide (PLA) microfibers incorporated into chitosan (CS) hydrogel were prepared for potential use in bone tissue engineering. PLA nonwovens modified with hydroxyapatite particles (HAp) were obtained using the electrospinning method. Then, three-dimensional scaffolds were created by rolling up the nonwovens and immersing them in CS-based solutions with graphene oxide (GO) or reduced graphene oxide (rGO) dispersed in the polymer matrix. Hydrogels were cross-linked using a novel freezing-thawing-gelling method. A broad spectrum of research methods was applied in order to thoroughly characterize both the nanofillers and the composite systems: scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, attenuated total reflection Fourier transform infrared spectroscopy, rheological and mechanical testing, as well as the assessment of chemical stability, bioactivity and cytocompatibility.


Assuntos
Quitosana/química , Durapatita/química , Grafite/química , Hidrogéis/química , Poliésteres/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Osso e Ossos , Proliferação de Células , Humanos , Teste de Materiais/métodos , Difração de Raios X
19.
Polymers (Basel) ; 12(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952266

RESUMO

The paper presents the course of synthesis and properties of a series of block copolymers intended for biomedical applications, mainly as a material for forming scaffolds for tissue engineering. These materials were obtained in the polymerization of l-lactide and copolymerization of l-lactide with glycolide carried out using a number of macroinitiators previously obtained in the reaction of polytransesterification of succinic diester, citric triester and 1,4-butanediol. NMR, FTIR and DSC were used to characterize the materials obtained; wettability and surface free energy were assessed too. Moreover, biological tests, i.e., viability and metabolic activity of MG-63 osteoblast-like cells in contact with synthesized polymers were performed. Properties of obtained block copolymers were controlled by the composition of the polymerization mixture and by the composition of the macroinitiator. The copolymers contained active side hydroxyl groups derived from citrate units present in the polymer chain. During the polymerization of L-lactide in the presence of polyesters with butylene citrate units in the chain, obtained products of the reaction held a fraction of highly branched copolymers with ultrahigh molecular weight. The reason for this observed phenomenon was strong intermolecular transesterification directed to lactidyl side chains, formed as a result of chain growth on hydroxyl groups related to the quaternary carbons of the citrate units. Based on the physicochemical properties and results of biological tests it was found that the most promising materials for scaffolds formation were poly(l-lactide-co-glycolide)-block-poly(butylene succinate-co-butylene citrate)s, especially those copolymers containing more than 60 mol % of lactidyl units.

20.
Materials (Basel) ; 12(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261610

RESUMO

Graphene family materials (GFM) are currently considered to be one of the most interesting nanomaterials with a wide range of application. They can also be used as modifiers of polymer matrices to develop composite materials with favorable properties. In this study, hybrid nanocomposites based on chitosan (CS) and reduced graphene oxide (rGO) were fabricated for potential use in bone tissue engineering. CS/rGO hydrogels were prepared by simultaneous reduction and composite formation in acetic acid or lactic acid and crosslinked with a natural agent-tannic acid (TAc). A broad spectrum of research methods was applied in order to thoroughly characterize both the components and the composite systems, i.e., X-ray Photoelectron Spectroscopy, X-ray Diffractometry, Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy, Scanning Electron Microscopy, ninhydrin assay, mechanical testing, in vitro degradation and bioactivity study, wettability, and, finally, cytocompatibility. The composites formed through the self-assembly of CS chains and exfoliated rGO sheets. Obtained results allowed also to conclude that the type of solvent used impacts the polymer structure and its ability to interact with rGO sheets and the mechanical properties of the composites. Both rGO and TAc acted as crosslinkers of the polymer chains. This study shows that the developed materials demonstrate the potential for use in bone tissue engineering. The next step should be their detailed biological examinations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...