Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(18): 10103-10111, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33620755

RESUMO

We present a novel synthesis strategy termed delayed linker addition (DLA) to synthesize hybrid zeolitic-imidazolate frameworks containing unsubstituted imidazolate linkers (Im) with SOD topology (hereafter termed Im/ZIF-8). Im linker incorporation can create larger voids and apertures, which are important properties for gas storage and separation. To date, there have been only a handful of reports of Im linkers incorporated into ZIF-8 frameworks, typically requiring arduous and complicated post synthesis approaches. DLA, as reported here, is a simple one-step synthesis strategy allowing high incorporation of Im linker into the ZIF-8 framework while still retaining its SOD topology. We fabricated mixed-matrix membranes (MMMs) with 6FDA-DAM polymer and Im/ZIF-8 obtained via DLA as a filler. The Im/ZIF-8-containing MMMs showed excellent performance for both propylene/propane and n-butane/i-butane separation, displaying permeability and ideal selectivity well above the polymer upper bound. Moreover, highly detailed molecular simulations shed light to the aperture size and flexibility response of Im/ZIF-8 and its improved diffusivity as compared to ZIF-8.

2.
ACS Omega ; 5(39): 25371-25380, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33043217

RESUMO

Zeolites with appropriately narrow pore apertures can kinetically enhance the selective adsorption of CO2 over N2. Here, we showed that the exchangeable cations (e.g., Na+ or K+) on zeolite ZK-4 play an important role in the CO2 selectivity. Zeolites NaK ZK-4 with Si/Al = 1.8-2.8 had very high CO2 selectivity when an intermediate number of the exchangeable cations were K+ (the rest being Na+). Zeolites NaK ZK-4 with Si/Al = 1.8 had high CO2 uptake capacity and very high CO2-over-N2 selectivity (1190). Zeolite NaK ZK-4 with Si/Al = 2.3 and 2.8 also had enhanced CO2 selectivity with an intermediate number of K+ cations. The high CO2 selectivity was related to the K+ cation in the 8-rings of the α-cage, together with Na+ cations in the 6-ring, obstructing the diffusion of N2 throughout the zeolite. The positions of the K+ cation in the 8-ring moved slightly (max 0.2 Å) toward the center of the α-cage upon the adsorption of CO2, as revealed by in situ X-ray diffraction. The CO2-over-N2 selectivity was somewhat reduced when the number of K+ cations approached 100%. This was possibly due to the shift in the K+ cation positions in the 8-ring when the number of Na+ was going toward 0%, allowing N2 diffusion through the 8-ring. According to in situ infrared spectroscopy, the amount of chemisorbed CO2 was reduced on zeolite ZK-4s with increasing Si/Al ratio. In the context of potential applications, a kinetically enhanced selection of CO2 could be relevant for applications in carbon capture and bio- and natural gas upgrading.

3.
ACS Appl Mater Interfaces ; 12(18): 20536-20547, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32281364

RESUMO

Zeolitic-imidazolate frameworks (ZIFs) are candidate materials for the next generation of membranes for cheaper, "greener" separations. More than a decade after ZIF introduction, the high propylene/propane selectivity of ZIF-8 and ZIF-67 is the only example of ZIF membranes with remarkable selectivity efficiency despite their numerous advantages over other families of materials. Herein, we demonstrate the effectiveness of molecular-scale modification in the design of new ZIF materials useful for the separation of important and highly challenging mixtures such as He/CH4, H2/CH4, O2/N2, CO2/CH4, and CO2/N2. Via computational methods, metal and linker substitutions are employed to produce new ZIF-8 variants with a finely discretized range of aperture sizes, as these govern the kinetic-based selectivity of the material. The permeability and selectivity through the ZIF-8 variants of the gases under study are estimated, and their performance is compared with an extensive number of polymeric, metal-organic framework, covalent-organic framework, and mixed-matrix membranes. The comparison shows that some of the ZIF-8 analogues can be used as membranes of unprecedented high separation performance. The scope of this work is to highlight the effectiveness of the molecular level design as means of membrane development to address the global need for cheaper separation methods and CO2 emission reduction.

4.
ACS Appl Mater Interfaces ; 10(46): 39631-39644, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30354063

RESUMO

A recently reported modification of the zeolitic-imidazolate framework-8 (ZIF-8) with partial replacement of the 2-methylimidazolate (mIm) linker with benzimidazolate (bIm), namely ZIF-7-8, is investigated with molecular simulations using a first-time reported force field. The size of the ZIF-7-8 aperture, which governs the gas-separation efficiency of this material and which has not been estimated before for this modification, is smaller than that of the original ZIF-8. The diffusivities of CO2, N2, and CH4 estimated through transition state theory calculations result in remarkably high diffusion selectivities for CO2/CH4 and CO2/N2 mixtures. This performance enhancement is investigated in terms of structural flexibility in the form of the aperture motion through extensive estimation of the effective diameter, the total effective area, and the motion of the aperture linkers, of both ZIF-8 and ZIF-7-8. Both apertures exhibit an oscillation through the rotation of the linkers, which are adjusted according to the size of the penetrant molecules the moment they pass through it. Finally, a subsequent analysis reveals that there is strong dependency of the separation performance on the bIm-to-mIm ratio: below 33% bIm incorporation, the appearance of ZIF-8-alike wide apertures decreases dramatically the size-based selectivity of the mixtures in ZIF-7-8.

5.
Phys Chem Chem Phys ; 20(7): 4879-4892, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29384175

RESUMO

The influence of a zeolitic imidazolate framework (ZIF)'s metal identity on its gas separation performance is studied extensively through molecular simulations for a variety of gases. ZIF-8 is used as the original framework for alterations of different metal substitutes of the Zn2+ metal. ZIF-8 consists of cages connected by narrow apertures that exhibit flexibility through "swelling", allowing for relatively large penetrants to diffuse. Replacing the central metal atom in the basic tetrahedral unit of ZIF-8 with Cd, Co or Be results in three different structures with increasing bonding stiffness with their neighboring atoms. The metal modification approach offers a way to control the flexibility and the size of the aperture, which constitutes the main energy barrier of the penetrant's hop-like diffusion between the framework's cages. Newly developed force fields are reported and utilized here; the new frameworks are compared to the original one, in terms of the diffusivity of various gas molecules as a function of their size (from He to n-butane). The correlation of the gas diffusivity with the aperture flexibility-molecular size relation is investigated. The results reveal that the aperture flexibility-molecular size relation governs the diffusivity, which shapes a common trend along all modifications. Furthermore, a new generalized method is employed for the screening of the various modifications for specific gas separations. This method is useful to detect optimum separation performance for the various modifications: CdIF-1 (Cd) for n-butane/iso-butane mixture; ZIF-67 (Co) for propylene/n-propane and ethylene/ethane mixtures; BeIF-1 (Be) for CO2/C2H6, CO2/CH4 and CO2/N2 mixtures.

6.
Langmuir ; 30(32): 9682-90, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25072512

RESUMO

Adsorbents with high capacity and selectivity for adsorption of CO2 are currently being investigated for applications in adsorption-driven separation of CO2 from flue gas. An adsorbent with a particularly high CO2-over-N2 selectivity and high capacity was tested here. Zeolite ZK-4 (Si:Al ∼ 1.3:1), which had the same structure as zeolite A (LTA), showed a high CO2 capacity of 4.85 mmol/g (273 K, 101 kPa) in its Na(+) form. When approximately 26 at. % of the extraframework cations were exchanged for K(+) (NaK-ZK-4), the material still adsorbed a large amount of CO2 (4.35 mmol/g, 273 K, 101 kPa), but the N2 uptake became negligible (<0.03 mmol/g, 273 K, 101 kPa). The majority of the CO2 was physisorbed on zeolite ZK-4 as quantified by consecutive volumetric adsorption measurements. The rate of physisorption of CO2 was fast, even for the highly selective sample. The molecular details of the sorption of CO2 were revealed as well. Computer modeling (Monte Carlo, molecular dynamics simulations, and quantum chemical calculations) allowed us to partly predict the behavior of fully K(+) exchanged zeolite K-ZK-4 upon adsorption of CO2 and N2 for Si:Al ratios up to 4:1. Zeolite K-ZK-4 with Si:Al ratios below 2.5:1 restricted the diffusion of CO2 and N2 across the cages. These simulations could not probe the delicate details of the molecular sieving of CO2 over N2. Still, this study indicates that zeolites NaK-ZK-4 and K-ZK-4 could be appealing adsorbents with high CO2 uptake (∼4 mmol/g, 101 kPa, 273 K) and a kinetically enhanced CO2-over-N2 selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...