Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 187: 11-21, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968860

RESUMO

The laser-based powder bed fusion of polymers (PBF-LB/P) process often utilizes a blend of powders with varying degrees of degradation. Specifically, for polyamide 12, the traditional reuse schema involves mixing post-processed powder with virgin powder at a predetermined ratio before reintroducing it to the process. Given that only about 15% of the powder is utilized in part production, and powders are refreshed in equal proportions, there arises a challenge with the incremental accumulation of material across build cycles. To mitigate the consumption of fresh powder relative to the actual material usage, this study introduces the incorporation of recycled material into the PBF-LB/P process. This new powder reuse schema is presented for the first time, focusing on the laser sintering process. The characteristics of the recycled powder were evaluated through scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, particle size distribution, and dynamic powder flowability assessments. The findings reveal that waste powders can be effectively reused in PBF-LB/P to produce components with satisfactory mechanical properties, porosity levels, dimensional accuracy, and surface quality.

2.
J Mech Behav Biomed Mater ; 153: 106493, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484428

RESUMO

Elastomeric biocomposites based on poly(glycerol adipate urethane) and hydroxyapatite were fabricated for tissue regeneration. The poly(glycerol adipate urethane) (PGAU) elastomeric composite matrices were obtained by chemical crosslinking of the poly(glycerol adipate) prepolymer (pPGA) with diisocyanate derivative of L-lysine. Two series of composites varying in the amount of L-lysine diisocyanate ethyl ester (LDI) used as a crosslinking agent were manufactured. As a ceramic filler both unmodified and L-lysine surface-modified hydroxyapatite (HAP) particles were used. The novelty of our research consists in the manufactured elastomeric materials and characterization of their linear viscoelastic (LVE) properties. The LVE properties of the composites were investigated by means of dynamic thermomechanical analysis. Frequency sweep and amplitude sweep measurements were performed in shear mode. The influence of the crosslinking agent (LDI) amount, HAP content and surface modification of HAP on the LVE properties of the composites was determined based on the analysis of the master curves of storage (G') and loss (G″) moduli and of tanδ of the composites. Depending on the amount of LDI, HAP and surface modification, the materials differ in the values of rubber elasticity plateau modulus (G0) and G' and G″ determined at selected shear frequencies and at the glassy state. G0 ranges from 278 kPa to 3.98 MPa, G' in the glassy state is within the range of 219 MPa-459 MPa. The G0 values of the PGAU-based composites are within the stiffness range of soft tissue. In view of the choice of HAP as the ceramic component and the G0 values, elastomeric composites have the potential to be used as filling materials in small bone defects (due to their mechanical similarity to osteoid) as well as materials for cartilage tissue regeneration.


Assuntos
Glicerol , Uretana , Glicerol/química , Lisina/química , Teste de Materiais , Elasticidade , Durapatita/química , Adipatos , Ésteres
3.
Materials (Basel) ; 14(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205967

RESUMO

We present a comparison of the influence of the conditioning temperature of microspheres made of medical grade poly(L-lactide) (PLLA) and polylactide with 4 wt % of D-lactide content (PLA) on the thermal and structural properties. The microspheres were fabricated using the solid-in-oil-in-water method for applications in additive manufacturing. The microspheres were annealed below the glass transition temperature (Tg), above Tg but below the onset of cold crystallization, and at two temperatures selected from the range of cold crystallization corresponding to the crystallization of the α' and α form of poly(L-lactide), i.e., at 40, 70, 90, and 120 °C, in order to verify the influence of the conditioning temperature on the sinterability of the microspheres set as the sintering window (SW). Based on differential scanning calorimetry measurements, the SWs of the microspheres were evaluated with consideration of the existence of cold crystallization and reorganization of crystal polymorphs. The results indicated that the conditioning temperature influenced the availability and range of the SWs depending on the D-lactide presence. We postulate the need for an individual approach for polylactide powders in determining the SW as a temperature range free of any thermal events. We also characterized other core powder characteristics, such as the residual solvent content, morphology, particle size distribution, powder flowability, and thermal conductivity, as key properties for successful laser sintering. The microspheres were close to spheres, and the size of the microspheres was below 100 µm. The residual solvent content decreased with the increase of the annealing temperature. The thermal conductivities were 0.073 and 0.064 W/mK for PLA and PLLA microspheres, respectively, and this depended on the spherical shape of the microspheres. The wide angle X-ray diffraction (WAXD) studies proved that an increase in the conditioning temperature caused a slight increase in the crystallinity degree for PLLA microspheres and a clear increase in crystallization for the PLA microspheres.

4.
Int J Mol Sci ; 21(18)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933206

RESUMO

Novel biocomposites of poly(L-lactide) (PLLA) and poly(l-lactide-co-glycolide) (PLLGA) with 10 wt.% of surface-modified hydroxyapatite particles, designed for applications in bone tissue engineering, are presented in this paper. The surface of hydroxyapatite (HAP) was modified with polyethylene glycol by using l-lysine as a linker molecule. The modification strategy fulfilled two important goals: improvement of the adhesion between the HAP surface and PLLA and PLLGA matrices, and enhancement of the osteological bioactivity of the composites. The surface modifications of HAP were confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), TGA, and elemental composition analysis. The influence of hydroxyapatite surface functionalization on the thermal and in vitro biological properties of PLLA- and PLLGA-based composites was investigated. Due to HAP modification with polyethylene glycol, the glass transition temperature of PLLA was reduced by about 24.5 °C, and melt and cold crystallization abilities were significantly improved. These achievements were scored based on respective shifting of onset of melt and cold crystallization temperatures and 1.6 times higher melt crystallization enthalpy compared with neat PLLA. The results showed that the surface-modified HAP particles were multifunctional and can act as nucleating agents, plasticizers, and bioactive moieties. Moreover, due to the presented surface modification of HAP, the crystallinity degree of PLLA and PLLGA and the polymorphic form of PLLA, the most important factors affecting mechanical properties and degradation behaviors, can be controlled.


Assuntos
Materiais Biocompatíveis/química , Durapatita/química , Poliésteres/química , Cristalização/métodos , Teste de Materiais , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...