Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100350

RESUMO

GLP-1/Notch signaling and a downstream RNA regulatory network maintain germline stem cells in Caenorhabditis elegans. In mutants lacking the GLP-1 receptor, all germline stem cells enter the meiotic cell cycle precociously and differentiate into sperm. This dramatic germline stem cell defect is called the "Glp" phenotype. The lst-1 and sygl-1 genes are direct targets of Notch transcriptional activation and functionally redundant. Whereas single lst-1 and sygl-1 mutants are fertile, lst-1 sygl-1 double mutants are sterile with a Glp phenotype. We set out to identify genes that function redundantly with either lst-1 or sygl-1 to maintain germline stem cells. To this end, we conducted forward genetic screens for mutants with a Glp phenotype in genetic backgrounds lacking functional copies of either lst-1 or sygl-1. The screens generated 9 glp-1 alleles, 2 lst-1 alleles, and 1 allele of pole-1, which encodes the catalytic subunit of DNA polymerase ε. Three glp-1 alleles reside in Ankyrin repeats not previously mutated. pole-1 single mutants have a low penetrance Glp phenotype that is enhanced by loss of sygl-1. Thus, the screen uncovered 1 locus that interacts genetically with sygl-1 and generated useful mutations for further studies of germline stem cell regulation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
2.
G3 (Bethesda) ; 9(1): 153-165, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30459181

RESUMO

Metazoan PUF (Pumilio and FBF) RNA-binding proteins regulate various biological processes, but a common theme across phylogeny is stem cell regulation. In Caenorhabditis elegans, FBF (fem-3 Binding Factor) maintains germline stem cells regardless of which gamete is made, but FBF also functions in the process of spermatogenesis. We have begun to "disentangle" these biological roles by asking which FBF targets are gamete-independent, as expected for stem cells, and which are gamete-specific. Specifically, we compared FBF iCLIP binding profiles in adults making sperm to those making oocytes. Normally, XX adults make oocytes. To generate XX adults making sperm, we used a fem-3(gf) mutant requiring growth at 25°; for comparison, wild-type oogenic hermaphrodites were also raised at 25°. Our FBF iCLIP data revealed FBF binding sites in 1522 RNAs from oogenic adults and 1704 RNAs from spermatogenic adults. More than half of these FBF targets were independent of germline gender. We next clustered RNAs by FBF-RNA complex frequencies and found four distinct blocks. Block I RNAs were enriched in spermatogenic germlines, and included validated target fog-3, while Block II and III RNAs were common to both genders, and Block IV RNAs were enriched in oogenic germlines. Block II (510 RNAs) included almost all validated FBF targets and was enriched for cell cycle regulators. Block III (21 RNAs) was enriched for RNA-binding proteins, including previously validated FBF targets gld-1 and htp-1 We suggest that Block I RNAs belong to the FBF network for spermatogenesis, and that Blocks II and III are associated with stem cell functions.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Oogênese/genética , Proteínas de Ligação a RNA/genética , Espermatogênese/genética , Animais , Sítios de Ligação , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Feminino , Masculino , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Filogenia , Ligação Proteica/genética , Processos de Determinação Sexual/genética , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/metabolismo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...