Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(3): 1697-1709, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38187447

RESUMO

Niosomes represent vesicular carriers capable of encapsulating both hydrophobic and hydrophilic drugs within their inner core or bilayer shell. They are typically composed of non-ionic synthetic surfactants such as sorbitan monostearate (Span60) with the addition of cholesterol (Chol). The physical properties and stability of niosomal vesicles strongly depend on the composition of their bilayers, which plays a significant role in determining the efficiency of drug encapsulation and release in drug delivery systems. In this study, we have explored the interactions between melatonin (Mel) molecules and the niosome bilayer, as well as their resulting physical properties. Molecular dynamics simulations were employed to investigate melatonin-inserted niosome bilayers, both with and without the inclusion of cholesterol. The simulation results revealed that cholesterol notably influences the location of melatonin molecules within the niosome bilayers. In the absence of cholesterol, melatonin tends to occupy the region around the Span60 tail groups. However, in the presence of cholesterol, melatonin is found in the vicinity of the Span60 head groups. Melatonin molecules in niosome bilayers without cholesterol exhibit a more ordered orientation when compared to those in bilayers containing 50 mol% cholesterol. The bilayer structure of the Span60/Mel and Span60/Chol/Mel systems exhibited a liquid-disordered phase (Ld). In contrast, the Span60/Chol bilayer system displays a liquid-ordered phase (Lo) with less fluidity. This study reveals that melatonin induces a disorderly bilayer structure and greater lateral expansion, whereas cholesterol induces an orderly bilayer structure and a more condensed effect. Cholesterol plays a crucial role in condensing the bilayer structure with stronger interactions between Span60 and cholesterol. The addition of 50 mol% cholesterol in the Span60 bilayers not only enhances the stability and rigidity of niosomes but also facilitates the easier release of melatonin from the bilayer membranes. This finding is particularly valuable in the context of preparing niosomes for drug delivery systems.

2.
Sci Rep ; 13(1): 4638, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944818

RESUMO

A modified sol-gel method was used to successfully produce Na1/2Y1/2Cu3Ti4O12 ceramics with high dielectric permittivity. The dielectric permittivity of Na1/2Y1/2Cu3Ti4O12 ceramics reaches values larger than 104 at room temperature and 1 kHz. Moreover, these ceramics exhibit two distinct thermally induced dielectric relaxations over a broad temperature range. The loss tangent is indeed small, ~0.032-0.035. At low temperatures, dielectric relaxation was attributed to the oxygen vacancy effect, while at high temperatures, it was attributed to grain boundary and sample-electrode contact effects. Our calculations revealed that Y and Na ions are likely to occupy Ca and Cu sites, respectively. As a result, other Cu related phases, especially CuO, were observed at the grain boundaries. Based on our analysis, there is a charge compensation between Na and Y ions in Na1/2Y1/2Cu3Ti4O12. Additionally, the Cu+ and Ti3+ states observed in our XPS study originate from the presence of an oxygen vacancy in the lattice. Last, the primary cause of the enormous dielectric permittivity of Na1/2Y1/2Cu3Ti4O12 ceramics primarily comes from the internal barrier layer capacitor effect.

3.
Molecules ; 27(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36014551

RESUMO

The effects of the sintering conditions on the phase compositions, microstructure, electrical properties, and dielectric responses of TiO2-excessive Na1/2Y1/2Cu3Ti4.1O12 ceramics prepared by a solid-state reaction method were investigated. A pure phase of the Na1/2Y1/2Cu3Ti4.1O12 ceramic was achieved in all sintered ceramics. The mean grain size slightly increased with increasing sintering time (from 1 to 15 h after sintering at 1070 °C) and sintering temperature from 1070 to 1090 °C for 5 h. The primary elements were dispersed in the microstructure. Low dielectric loss tangents (tan δ~0.018-0.022) were obtained. Moreover, the dielectric constant increased from ε'~5396 to 25,565 upon changing the sintering conditions. The lowest tan δ of 0.009 at 1 kHz was obtained. The electrical responses of the semiconducting grain and insulating grain boundary were studied using impedance and admittance spectroscopies. The breakdown voltage and nonlinear coefficient decreased significantly as the sintering temperature and time increased. The presence of Cu+, Cu3+, and Ti3+ was examined using X-ray photoelectron spectroscopy, confirming the formation of semiconducting grains. The dielectric and electrical properties were described using Maxwell-Wagner relaxation, based on the internal barrier layer capacitor model.

4.
Molecules ; 26(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34641587

RESUMO

In this work, the colossal dielectric properties and Maxwell-Wagner relaxation of TiO2-rich Na1/2Y1/2Cu3Ti4+xO12 (x = 0-0.2) ceramics prepared by a solid-state reaction method are investigated. A single phase of Na1/2Y1/2Cu3Ti4O12 is achieved without the detection of any impurity phase. The highly dense microstructure is obtained, and the mean grain size is significantly reduced by a factor of 10 by increasing Ti molar ratio, resulting in an increased grain boundary density and hence grain boundary resistance (Rgb). The colossal permittivities of ε' ~ 0.7-1.4 × 104 with slightly dependent on frequency in the frequency range of 102-106 Hz are obtained in the TiO2-rich Na1/2Y1/2Cu3Ti4+xO12 ceramics, while the dielectric loss tangent is reduced to tanδ ~ 0.016-0.020 at 1 kHz due to the increased Rgb. The semiconducting grain resistance (Rg) of the Na1/2Y1/2Cu3Ti4+xO12 ceramics increases with increasing x, corresponding to the decrease in Cu+/Cu2+ ratio. The nonlinear electrical properties of the TiO2-rich Na1/2Y1/2Cu3Ti4+xO12 ceramics can also be improved. The colossal dielectric and nonlinear electrical properties of the TiO2-rich Na1/2Y1/2Cu3Ti4+xO12 ceramics are explained by the Maxwell-Wagner relaxation model based on the formation of the Schottky barrier at the grain boundary.

5.
J Mol Graph Model ; 108: 107983, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34274727

RESUMO

Melatonin is a natural hormone that has been shown highly antioxidant effects. Consequently, it has been extensively studied for its therapeutic potential in several diseases such as insomnia, cardiovascular, Alzheimer, and certain types of cancers. Recently, it has been used to adjuvant treatment for COVID-19 patients. It is well-known that melatonin is highly hydrophobic, resulting in lower solubility. However, the molecular structure and dynamic behavior of the formation of melatonin in an aqueous solution and at the water-air interface have not yet been clearly explained. This information is necessary for the melatonin formulation in drug delivery systems. The present work focuses on the molecular structure and dynamics of melatonin molecules in the aqueous solution and at the water-air interface based on using a molecular dynamics simulation study. The results showed that most melatonin molecules were aggregated in an aqueous solution while they were formed a self-assembled monolayer with the ordered structure at the water-air interface. The strong interaction of melatonin depends on their functional group which showed a similar trend for both systems and was sequenced as follows: carbonyl O > indole NH > amide NH > methoxy OA, respectively. However, the carbonyl O and the indole NH groups exhibit strong interactions with water molecules at the interface. Consequently, the two preferred orientations of the melatonin head group can be observed at the water-air interface (i.e., one is to turn the head group to the water surface with the tilted angle of ~40°-60° and the second one is to turn the head group away from the water surface with the tilted angle of ~130°). The longer lifetime of hydrogen bonds formed between melatonin themselves in the bulk water reveals that the stability of melatonin aggregation in an aqueous solution is more stable. Therefore, melatonin has less soluble in an aqueous solution.


Assuntos
COVID-19 , Melatonina , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , SARS-CoV-2 , Água
6.
Molecules ; 26(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070803

RESUMO

The effects of charge compensation on dielectric and electrical properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics (x = 0-0.05) prepared by a solid-state reaction method were studied based on the configuration of defect dipoles. A single phase of CaCu3Ti4O12 was observed in all ceramics with a slight change in lattice parameters. The mean grain size of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics was slightly smaller than that of the undoped ceramic. The dielectric loss tangent can be reduced by a factor of 13 (tanδ ~0.017), while the dielectric permittivity was higher than 104 over a wide frequency range. Impedance spectroscopy showed that the significant decrease in tanδ was attributed to the highly increased resistance of the grain boundary by two orders of magnitude. The DFT calculation showed that the preferential sites of Al and Nb/Ta were closed together in the Ti sites, forming self-charge compensation, and resulting in the enhanced potential barrier height at the grain boundary. Therefore, the improved dielectric properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics associated with the enhanced electrical properties of grain boundaries. In addition, the non-Ohmic properties were also improved. Characterization of the grain boundaries under a DC bias showed the reduction of potential barrier height at the grain boundary. The overall results indicated that the origin of the colossal dielectric properties was caused by the internal barrier layer capacitor structure, in which the Schottky barriers at the grain boundaries were formed.

7.
RSC Adv ; 11(40): 25038-25046, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481037

RESUMO

CaCu3Ti4O12 and CaCu2.95Mg0.05Ti3.95Al0.05O12 ceramics were fabricated via a solid-state reaction method. A single-phase of CaCu3Ti4O12 was found in these two ceramics. Very great grain size expansion was produced by co-doping with Mg2+ and Al3+. DFT results indicate that both Mg and Al atoms preferentially occupy Cu sites, creating liquid-phase sintering decomposition at grain boundary layers. Very high dielectric permittivity of ∼58 397 and low loss tangent of about 0.047 were achieved in a CaCu2.95Mg0.05Ti3.95Al0.05O12 ceramic. Additionally, the temperature stability of the dielectric response was improved. Better dielectric properties in the co-doped ceramic have possible origins from enhanced grain boundary responses, especially from the influences of metastable phases and oxygen enrichment at the grain boundaries. Experimental and computational results indicate that the colossal dielectric properties in CaCu3Ti4O12 ceramics might be correlated with an internal barrier layer capacitor structure.

8.
RSC Adv ; 11(27): 16396-16403, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35479167

RESUMO

Ca1-x Cd x Cu3Ti4O12-2y F2y (x = y = 0, 0.10, and 0.15) ceramics were successfully prepared via a conventional solid-state reaction (SSR) method. A single-phase CaCu3Ti4O12 with a unit cell ∼7.393 Šwas detected in all of the studied ceramic samples. The grain sizes of sintered Ca1-x Cd x Cu3Ti4O12-2y F2y ceramics were significantly enlarged with increasing dopant levels. Liquid-phase sintering mechanisms could be well matched to explain the enlarged grain size in the doped ceramics. Interestingly, preserved high dielectric permittivities, ∼36 279-38 947, and significantly reduced loss tangents, ∼0.024-0.033, were achieved in CdF2 codoped CCTO ceramics. Density functional theory results disclosed that the Cu site is the most preferable location for the Cd dopant. Moreover, F atoms preferentially remained close to the Cd atoms in this structure. An enhanced grain boundary response might be a primary cause of the improved dielectric properties in Ca1-x Cd x Cu3Ti4O12-2y F2y ceramics. The internal barrier layer capacitor model could well describe the colossal dielectric response of all studied sintered ceramics.

9.
J Mol Graph Model ; 25(1): 55-60, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16343960

RESUMO

The intermolecular potential between a 18-crown-6/K+ complex and a water molecule is derived from 1200 energy points obtained from quantum chemical calculations using the 6-31G** basis set. The ab initio fitted potential was then applied to study the structural properties of the complex in an aqueous solution using the Monte Carlo simulation method. The radial distribution function (RDF) centered at K+ to the oxygen atom of water shows a sharp first peak at 2.88 A. The corresponding coordination number, integrated up to the first minimum at 3.76 A, is 2 water molecules. The results indicate clearly that the 18-crown-6/K+ complex was solvated by the two nearest neighbors, one above and other below the ligand's plane. Evaluation was focused on the precise position and orientation of the two water molecules. It was found that the oxygen atoms of the two nearest neighbors bind to the K+ while their hydrogen atoms rotate freely around the vector perpendicular to the ligand's molecular plane.


Assuntos
Éteres de Coroa/química , Potássio/química , Água/química , Cátions Monovalentes/química , Simulação por Computador , Hidrogênio/química , Estrutura Molecular , Método de Monte Carlo , Oxigênio/química , Teoria Quântica , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...