Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytokine ; 17(5): 234-42, 2002 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-12027404

RESUMO

The cytokines IL-6, initially recognized as a regulator of immune and inflammatory response and IL-8, a potential regulator of angiogenesis, also regulate the growth of many tumor cells. Human cancer cells selected for multidrug resistance to common chemotherapeutic agents demonstrate increased expression of IL-6 and IL-8. To determine whether IL-6 or IL-8 overexpression contributes directly to the drug resistant phenotype, IL-6 or IL-8 cDNA were introduced into the paclitaxel sensitive human osteosarcoma cell line U-2OS using the pIRESneo bicistronic expression vector. Interleukin-6 and IL-8 transfectants were selected for either high IL-6 or IL-8 secretion and evaluated in drug resistance assays. Two IL-6 and two IL-8 secreting clones express IL-6 or IL-8 levels of 10 ng/ml and 1 ng/ml in culture, while parental U-2OS and pIRESneo vector transfected control cells express IL-6 and IL-8 levels of 0.005 ng/ml and 0.1 ng/ml, respectively. MTT cytotoxicity with IL-6 transfected cells demonstrates a five-fold increase in resistance to paclitaxel and a four-fold increase in resistance to doxorubicin as compared to U-2OS. There are no changes in mitoxantrone or topotecan resistance in the IL-6 transfectants as compared to parental U-2OS. Northern analysis of IL-6 transfectants demonstrates that the resistant phenotype is not related to increased levels of MDR-1, MRP-1, or LRP. Western analysis also confirms that P-glycoprotein levels are not altered in IL-6 transfectants. Further supporting an MDR-1 independent mechanism of drug resistance, verapamil cannot reverse paclitaxel resistance in transfected cells, findings further supported by rhodamine 123 exclusion data. Treatment of IL-6 transfected cells with paclitaxel, compared with drug-sensitive parental U-2OS, shows U-2OS(IL-6) are significantly more resistant to apoptosis induced by paclitaxel and exhibit decreased proteolytic activation of caspase-3. In contrast U-2OS(IL-8) transfectants demonstrate no appreciable increase in paclitaxel resistance when compared with parental cells. In summary, while both IL-6 and IL-8 are overexpressed in paclitaxel resistant cell lines, only IL-6 has the potential to contribute directly to paclitaxel and doxorubicin resistance in U-2OS. This resistance is through a non-MDR-1 pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Paclitaxel/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Antineoplásicos/farmacologia , Northern Blotting , Western Blotting , Caspase 3 , Caspases/biossíntese , Divisão Celular , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos , Humanos , Mitoxantrona/farmacologia , Osteossarcoma/tratamento farmacológico , Fenótipo , RNA/metabolismo , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Fatores de Tempo , Topotecan/farmacologia , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...