Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 7: 39-46, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34179568

RESUMO

New viral infections, due to their rapid spread, lack of effective antiviral drugs and vaccines, kill millions of people every year. The global pandemic SARS-CoV-2 in 2019-2021 has shown that new strains of viruses can widespread very quickly, causing disease and death, with significant socio-economic consequences. Therefore, the search for new methods of combating different pathogenic viruses is an urgent task, and strategies based on nanoparticles are of significant interest. This work demonstrates the antiviral adsorption (virucidal) efficacy of nanoparticles of porous silicon (PSi NPs) against various enveloped and non-enveloped pathogenic human viruses, such as Influenza A virus, Poliovirus, Human immunodeficiency virus, West Nile virus, and Hepatitis virus. PSi NPs sized 60 nm with the average pore diameter of 2 nm and specific surface area of 200 m2/g were obtained by ball-milling of electrochemically-etched microporous silicon films. After interaction with PSi NPs, a strong suppression of the infectious activity of the virus-contaminated fluid was observed, which was manifested in a decrease in the infectious titer of all studied types of viruses by approximately 104 times, and corresponded to an inactivation of 99.99% viruses in vitro. This sorption capacity of PSi NPs is possible due to their microporous structure and huge specific surface area, which ensures efficient capture of virions, as confirmed by ELISA analysis, dynamic light scattering measurements and transmission electron microscopy images. The results obtained indicate the great potential of using PSi NPs as universal viral sorbents and disinfectants for the detection and treatment of viral diseases.

2.
Viruses ; 10(4)2018 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-29614716

RESUMO

Wild ducks are known to be able to carry avian influenza viruses over long distances and infect domestic ducks, which in their turn infect domestic chickens. Therefore, prevention of virus transmission between ducks and chickens is important to control the spread of avian influenza. Here we used a low pathogenic wild aquatic bird virus A/duck/Moscow/4182/2010 (H5N3) for prevention of highly pathogenic avian influenza virus (HPAIV) transmission between ducks and chickens. We first confirmed that the ducks orally infected with H5N1 HPAIV A/chicken/Kurgan/3/2005 excreted the virus in feces. All chickens that were in contact with the infected ducks became sick, excreted the virus, and died. However, the ducks orally inoculated with 104 50% tissue culture infective doses of A/duck/Moscow/4182/2010 and challenged 14 to 90 days later with H5N1 HPAIV did not excrete the challenge virus. All contact chickens survived and did not excrete the virus. Our results suggest that low pathogenic virus of wild aquatic birds can be used for prevention of transmission of H5N1 viruses between ducks and chickens.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/transmissão , Vacinas Vivas não Atenuadas/imunologia , Eliminação de Partículas Virais/imunologia , Administração Oral , Animais , Animais Domésticos , Galinhas , Patos , Fezes/virologia , Imunização , Virus da Influenza A Subtipo H5N1/imunologia , Vírus da Influenza A/classificação , Vírus da Influenza A/patogenicidade , Vacinas contra Influenza/administração & dosagem , Doenças das Aves Domésticas/mortalidade , Vacinas Vivas não Atenuadas/administração & dosagem
3.
Arch Virol ; 158(2): 467-72, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23065113

RESUMO

Hemagglutinin (HA) of influenza virus is S-acylated with stearate at a transmembrane cysteine and with palmitate at two cytoplasmic cysteines. The amount of stearate varies from 35 (in avian strains) to 12% (in human strains), although the acylation region exhibits only minor or even no amino acid differences between HAs. To address whether matrix proteins and neuraminidase affect stearoylation of HA, we used mass spectrometry to analyze laboratory reassortants containing avian virus HA and the internal proteins from a human virus. Only minor fluctuations in the amount of stearate were observed, implying that other viral proteins do not affect acylation of HA.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Orthomyxoviridae/química , Palmitatos/análise , Processamento de Proteína Pós-Traducional , Vírus Reordenados/química , Estearatos/análise , Acilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Espectrometria de Massas
4.
Influenza Other Respir Viruses ; 6(3): 188-95, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21951678

RESUMO

OBJECTIVE: Parallel testing of inactivated (split and whole virion) and live vaccine was conducted to compare the immunogenicity and protective efficacy against homologous and heterosubtypic challenge by H5N1 highly pathogenic avian influenza virus. METHOD: Four experimental live vaccines based on two H5N1 influenza virus strains were tested; two of them had hemagglutinin (HA) of A/Vietnam/1203/04 strain lacking the polybasic HA cleavage site, and two others had hemagglutinins from attenuated H5N1 virus A/Chicken/Kurgan/3/05, with amino acid substitutions of Asp54/Asn and Lys222/Thr in HA1 and Val48/Ile and Lys131/Thr in HA2 while maintaining the polybasic HA cleavage site. The neuraminidase and non-glycoprotein genes of the experimental live vaccines were from H2N2 cold-adapted master strain A/Leningrad/134/17/57 (VN-Len and Ku-Len) or from the apathogenic H6N2 virus A/Gull/Moscow/3100/2006 (VN-Gull and Ku-Gull). Inactivated H5N1 and H1N1 and live H1N1 vaccine were used for comparison. All vaccines were applied in a single dose. Safety, immunogenicity, and protectivity against the challenge with HPAI H5N1 virus A/Chicken/Kurgan/3/05 were estimated. RESULTS: All experimental live H5 vaccines tested were apathogenic as determined by weight loss and conferred more than 90% protection against lethal challenge with A/Chicken/Kurgan/3/05 infection. Inactivated H1N1 vaccine in mice offered no protection against challenge with H5N1 virus, while live cold-adapted H1N1 vaccine reduced the mortality near to zero level. CONCLUSIONS: The high yield, safety, and protectivity of VN-Len and Ku-Len made them promising strains for the production of inactivated and live vaccines against H5N1 viruses.


Assuntos
Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Influenza Humana/prevenção & controle , Animais , Anticorpos Antivirais/imunologia , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/efeitos adversos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Virus da Influenza A Subtipo H5N1/genética , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/genética , Influenza Aviária/imunologia , Influenza Aviária/virologia , Influenza Humana/imunologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia
5.
Virus Res ; 160(1-2): 294-304, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21763731

RESUMO

Interactions between model enzymes and the influenza virus hemagglutinin (HA) homotrimeric spike were addressed. We digested influenza virions (naturally occurring strains and laboratory reassortants) with bromelain or subtilisin Carlsberg and analyzed by MALDI-TOF mass spectrometry the resulting HA2 C-terminal segments. All cleavage sites, together with (minor) sites detected in undigested HAs, were situated in the linker region that connects the transmembrane domain to the ectodomain. In addition to cleavage at highly favorable amino acids, various alternative enzyme preferences were found that strongly depended on the HA subtype/type. We also evaluated the surface electrostatic potentials, binding cleft topographies and spatial dimensions of stem bromelain (homologically modeled) and subtilisin Carlsberg (X-ray resolved). The results show that the enzymes (∼45Å(3)) would hardly fit into the small (∼18-20Å) linker region of the HA-spike. However, the HA membrane proximal ectodomain region was predicted to be intrinsically disordered. We propose that its motions allow steric adjustment of the enzymes' active sites to the neck of the HA spike. The subtype/type-specific architectures in this region also influenced significantly the cleavage preferences of the enzymes.


Assuntos
Bromelaínas/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Mapeamento de Interação de Proteínas , Subtilisinas/metabolismo , Bromelaínas/química , Bromelaínas/genética , Biologia Computacional , Cristalografia por Raios X , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hidrólise , Modelos Biológicos , Modelos Moleculares , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Subtilisinas/química , Subtilisinas/genética
6.
Biochim Biophys Acta ; 1808(7): 1843-54, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21420932

RESUMO

Influenza virus hemagglutinin is a homotrimeric spike glycoprotein crucial for virions' attachment, membrane fusion, and assembly reactions. X-ray crystallography data are available for hemagglutinin ectodomains of various types/subtypes but not for anchoring segments. To get structural information for the linker and transmembrane regions of hemagglutinin, influenza A (H1-H16 subtypes except H8 and H15) and B viruses were digested with bromelain or subtilisin Carlsberg, either within virions or in non-ionic detergent micelles. Proteolytical fragments were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Within virions, hemagglutinins of most influenza A/Group-1 and type B virus strains were more susceptible to digestion with bromelain and/or subtilisin compared to A/Group-2 hemagglutinins. The cleavage sites were always located in the hemagglutinin linker sequence. In detergent, 1) bromelain cleaved hemagglutinin of every influenza A subtype in the linker region; 2) subtilisin cleaved Group-2 hemagglutinins in the linker region; 3) subtilisin cleaved Group-1 hemagglutinins in the transmembrane region; 4) both enzymes cleaved influenza B virus hemagglutinin in the transmembrane region. We propose that the A/Group-2 hemagglutinin linker and/or transmembrane regions are more tightly associated within trimers than type A/Group-1 and particularly type B ones. This hypothesis is underpinned by spatial trimeric structure modeling performed for transmembrane regions of both Group-1 and Group-2 hemagglutinin representatives. Differential S-acylation of the hemagglutinin C-terminal anchoring segment with palmitate/stearate residues possibly contributes to fine tuning of transmembrane trimer packing and stabilization since decreased stearate amount correlated with deeper digestion of influenza B and some A/Group-1 hemagglutinins.


Assuntos
Biopolímeros/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A/química , Vírus da Influenza B/química , Sequência de Aminoácidos , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza B/crescimento & desenvolvimento , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...