Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37766144

RESUMO

An unconjugated composite peptide vaccine targeting multiple conserved influenza epitopes from hemagglutinin, neuraminidase, and matrix protein and formulated with a safe and highly potent adjuvant, Army Liposome formulation (ALFQ), generated broad and durable immune responses in outbred mice. The antibodies recognized specific epitopes in influenza peptides and several human, avian, and swine influenza viruses. Comparable antibody responses to influenza viruses were observed with intramuscular and intradermal routes of vaccine administration. The peptide vaccine induced cross-reactive antibodies that recognized influenza virus subtypes A/H1N1, A/H3N2, A/H5N1, B/Victoria, and B/Yamagata. In addition, immune sera neutralized seasonal and pandemic influenza strains (Group 1 and Group 2). This composite multi-epitope peptide vaccine, formulated with ALFQ and administered via intramuscular and intradermal routes, provides a high-performance supra-seasonal vaccine that would be cost-effective and easily scalable, thus moving us closer to a viable strategy for a universal influenza vaccine and pandemic preparedness.

2.
J Anim Sci ; 100(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908791

RESUMO

Substantial economic losses in animal agriculture result from animals experiencing heat stress (HS). Pigs are especially susceptible to HS, resulting in reductions in growth, altered body composition, and compromised substrate metabolism. In this study, an artificial high-intensity sweetener and capsaicin (CAPS-SUC; Pancosma, Switzerland) were supplemented in combination to mitigate the adverse effects of HS on pig performance. Forty cross-bred barrows (16.2 ± 6 kg) were assigned to one of five treatments: thermal neutral controls (TN) (22 ± 1.2 °C; 38%-73% relative humidity) with ad libitum feed, HS conditions with ad libitum feed with (HS+) or without (HS-) supplementation, and pair-fed to HS with (PF+) or without supplementation (PF-). Pigs in heat-stressed treatments were exposed to a cyclical environmental temperature of 12 h at 35 ± 1.2 °C with 27%-45% relative humidity and 12 h at 30 ± 1.1 °C with 24%-35% relative humidity for 21 d. Supplementation (0.1 g/kg feed) began 7 d before and persisted through the duration of environmental or dietary treatments (HS/PF), which lasted for 21 d. Rectal temperatures and respiration rates (RR; breaths/minute) were recorded thrice daily, and feed intake (FI) was recorded daily. Before the start and at the termination of environmental treatments (HS/PF), a muscle biopsy of the longissimus dorsi was taken for metabolic analyses. Blood samples were collected weekly, and animals were weighed every 3 d during treatment. Core temperature (TN 39.2 ± 0.02 °C, HS- 39.6 ± 0.02 °C, and HS+ 39.6 ± 0.02 °C, P < 0.001) and RR (P < 0.001) were increased in both HS- and HS+ groups, but no difference was detected between HS- and HS+. PF- pigs exhibited reduced core temperature (39.1 ± 0.02 °C, P < 0.001), which was restored in PF+ pigs (39.3 ± 0.02 °C) to match TN. Weight gain and feed efficiency were reduced in PF- pigs (P < 0.05) but not in the PF+ or the HS- or HS+ groups. Metabolic flexibility was decreased in the HS- group (-48.4%, P < 0.05) but maintained in the HS+ group. CAPS-SUC did not influence core temperature or weight gain in HS pigs but did restore core temperature, weight gain, and feed efficiency in supplemented PF pigs. In addition, supplementation restored metabolic flexibility during HS and improved weight gain and feed efficiency during PF, highlighting CAPS-SUC's therapeutic metabolic effects.


Heat stress reduces pig performance due to metabolic responses to heat. During heat stress, pigs lose the ability to metabolize fatty acids for energy and rely on carbohydrates to fuel growth. Evidence has shown that capsaicin, the active ingredient in chili peppers, interacts with heat-sensing receptors to protect against heat stress by preventing changes to metabolism. Artificial sweeteners can also preserve fat metabolism by inducing the secretion of metabolic regulatory hormones from the gut. This study examined a combination of capsaicin and artificial sweetener to restore growth and maintain metabolism during 3 wk of heat stress. As pigs often reduce their feed intake during heat stress, a group of pigs was feed restricted to match the reduced feeding observed in the heat-stressed pigs. Pigs given the feed supplement during heat stress maintained their metabolic flexibility, a measure of metabolic health. In agreement with previous short-term studies, the capsaicin and artificial sweetener supplement improved feed efficiency and weight gain in feed-restricted pigs. This study demonstrated that supplementation with capsaicin and artificial sweetener may prevent metabolic dysfunction during heat stress. This study also confirmed that supplementation with capsaicin and artificial sweetener does improve feed-restricted pigs' growth and feed efficiency.


Assuntos
Transtornos de Estresse por Calor , Doenças dos Suínos , Ração Animal/análise , Animais , Temperatura Corporal/fisiologia , Capsaicina/análise , Capsaicina/farmacologia , Suplementos Nutricionais/análise , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico/fisiologia , Temperatura Alta , Edulcorantes , Suínos , Aumento de Peso
3.
Vaccines (Basel) ; 9(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202178

RESUMO

A universal influenza candidate vaccine that targets multiple conserved influenza virus epitopes from hemagglutinin (HA), neuraminidase (NA) and matrix (M2e) proteins was combined with the potent Army liposomal adjuvant (ALFQ) to promote induction of broad immunity to seasonal and pandemic influenza strains. The unconjugated and CRM-conjugated composite peptides formulated with ALFQ were highly immunogenic and induced both humoral and cellular immune responses in mice. Broadly reactive serum antibodies were induced across various IgG isotypes. Mice immunized with the unconjugated composite peptide developed antibody responses earlier than mice immunized with conjugated peptides, and the IgG antibodies were broadly reactive and neutralizing across Groups 1 and 2 influenza viruses. Multi-epitope unconjugated influenza composite peptides formulated with ALFQ provide a novel strategy for the development of a universal influenza vaccine. These synthetic peptide vaccines avoid the pitfalls of egg-produced influenza vaccines and production can be scaled up rapidly and economically.

4.
Animals (Basel) ; 11(1)2021 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477278

RESUMO

Heat stress (HS) diminishes animal production, reducing muscle growth and increasing adiposity, especially in swine. Excess heat creates a metabolic phenotype with limited lipid oxidation that relies on aerobic and anaerobic glycolysis as a predominant means of energy production, potentially reducing metabolic rate. To evaluate the effects of HS on substrate utilization and energy expenditure, crossbred barrows (15.2 ± 2.4 kg) were acclimatized for 5 days (22 °C), then treated with 5 days of TN (thermal neutral, 22 °C, n = 8) or HS (35 °C, n = 8). Pigs were fed ad libitum and monitored for respiratory rate (RR) and rectal temperature. Daily energy expenditure (DEE) and respiratory exchange ratio (RER, CO2:O2) were evaluated fasted in an enclosed chamber through indirect calorimetry. Muscle biopsies were obtained from the longissimus dorsi pre/post. HS increased temperature (39.2 ± 0.1 vs. 39.6 ± 0.1 °C, p < 0.01) and RER (0.91 ± 0.02 vs. 1.02 ± 0.02 VCO2:VO2, p < 0.01), but decreased DEE/BW (68.8 ± 1.7 vs. 49.7 ± 4.8 kcal/day/kg, p < 0.01) relative to TN. Weight gain (p = 0.80) and feed intake (p = 0.84) did not differ between HS and TN groups. HS decreased muscle metabolic flexibility (~33%, p = 0.01), but increased leucine oxidation (~35%, p = 0.02) compared to baseline values. These data demonstrate that HS disrupts substrate regulation and energy expenditure in growing pigs.

5.
J Anim Sci ; 98(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32333770

RESUMO

Pigs exposed to elevated ambient temperatures exhibit reduced daily gain, alterations in muscle and fat deposition, and decreased health. Negative aspects of gastrointestinal (GI) function, integrity, and permeability also occur. High-intensity sweeteners can ameliorate the negative effects of heat stress (HS) by increasing GI glucagon-like peptide-2 production while capsicum oleoresin has been shown to reduce inflammatory response. The effects of an artificial high-intensity sweetener and capsicum oleoresin (CAPS-SUC; TakTik X-Hit, Pancosma, Switzerland) on growth performance of pigs were examined. Forty-eight pigs (12 wk of age, 43.2 ± 4.3 kg) were assigned to six treatments: thermoneutral conditions (21 ± 1.1 °C; 40% to 70% relative humidity) fed ad libitum with (TN+) or without supplement (TN-), heat stress (35 ± 1 °C; 20% to 40% relative humidity) fed ad libitum with (HS+) or without supplement (HS-), and thermoneutral conditions pair-fed to HS intake with (PFTN+) or without supplement (PFTN-). Supplementation (0.1 g/kg feed) began 2 d prior to the 3-d environmental treatment period. Body weights (BWs) and blood samples were collected on days -1 and 3. Rectal temperature (RT) and respiration rate (RR) were measured thrice daily and the feed intake (FI) was recorded daily. Intestinal sections were collected for histology. Pigs in HS conditions exhibited increased RT (~1.2 °C) and RR (~2.7-fold) compared with TN and PFTN groups (P < 0.01). HS+ animals had increased RR when compared with HS- animals (P < 0.02). Heat stress decreased FI compared with TN. HS and PFTN decreased (P < 0.05) average daily gain compared with TN. Supplement did not alter the BW gain. HS and PFTN decreased (P < 0.05) Gain:Feed compared with TN during environmental treatment. Supplementation with CAPS-SUC increased Gain:Feed by 0.12 (P < 0.05). Circulating glucose concentrations tended to decrease in CAPS-SUC vs. non-supplemented HS and PFTN animals (P ≤ 0.1). Circulating insulin concentrations as well as monocyte count increased in HS compared with PFTN (P < 0.04) but did not differ from TN and likely linked to altered FI. CAPS-SUC increased basophil count (P < 0.02), irrespective of environment. Ileal villus height tended to decrease during HS and PFTN compared with TN (P < 0.08), indicating an effect of intake. Overall, CAPS-SUC supplementation increased pig feed efficiency and may improve immune response.


Assuntos
Capsicum/química , Suplementos Nutricionais , Transtornos de Estresse por Calor/veterinária , Extratos Vegetais/farmacologia , Edulcorantes/farmacologia , Doenças dos Suínos/prevenção & controle , Ração Animal/análise , Animais , Dieta/veterinária , Digestão , Transtornos de Estresse por Calor/prevenção & controle , Resposta ao Choque Térmico , Temperatura Alta , Insulina/sangue , Intestinos , Taxa Respiratória/efeitos dos fármacos , Edulcorantes/administração & dosagem , Suínos
6.
J Nutr ; 150(5): 1086-1092, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31965174

RESUMO

BACKGROUND: Dietary calcium and phosphorus are required for bone and muscle development. Deficiencies of these macrominerals reduce bone mineral and muscle accretion potentially via alterations of mesenchymal stem cell (MSC) and satellite cell (SC) activities. OBJECTIVES: With increasing interest in the role of early-life events on lifetime health outcomes, we aimed to elucidate the impact of dietary calcium and phosphorus, from deficiency through excess, on MSC and SC characteristics during neonatal development. METHODS: Neonatal pigs [30 females, 1-d-old, 1.46 ± 0.04 kg body weight (BW)] were fed milk replacers for 16 d that were isonitrogenous and isocaloric with a consistent ratio of calcium to phosphorus, but either 25% deficient (calcium: 0.78%; phosphorus: 0.60%; CaPD), adequate (calcium: 1.08%; phosphorus: 0.84%; CaPA), or 25% in excess (calcium: 1.38%; phosphorus: 1.08%; CaPE) of calcium and phosphorus requirements based on sow-milk composition and extrapolation from NRC requirements for older pigs. BW and feed intake were recorded daily. Blood was collected for serum phosphorus, parathyroid hormone (PTH), and fibroblast growth factor 23 (FGF23) determination. Humeri were collected for MSC isolation and radii/ulnae bone were collected for analysis. Longissimus dorsi muscle was collected for SC isolation and analysis. RESULTS: There was 4.6% increase in bone ash percentage in CaPE- versus CaPD-fed pigs (P < 0.05). In vivo proliferation indicated a 41.3% increase in MSCs in CaPA compared with CaPD and a 19% increase in SCs in CaPA compared with both CaPE and CaPD. MSCs from CaPD had 2- to 5-fold greater expression of peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), and lipoprotein lipase (LPL) but lower osteocalcin (BGLAP) and fibronectin (FN1) expression than CaPA (P < 0.05). SCs from CaPD-fed pigs had 19% lower in vivo proliferation than in CaPA-fed pigs. CONCLUSIONS: These findings demonstrated that feeding a diet marginally deficient in calcium and phosphorus to neonatal pigs had a great impact on bone development, MSC, and SC characteristics. These dietary deficiencies may program future bone health and muscle development by altering MSC and SC activities.


Assuntos
Cálcio da Dieta/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Compostos Fitoquímicos/farmacologia , Suínos/fisiologia , Ração Animal , Animais , Animais Recém-Nascidos , Densidade Óssea , Desenvolvimento Ósseo , Proliferação de Células , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos
7.
Growth Horm IGF Res ; 25(5): 207-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26198127

RESUMO

OBJECTIVES: Myostatin (Mstn) inhibits while insulin-like growth factors 1 and 2 (Igf1 and Igf2) increase skeletal muscle growth. However, there is little known regarding Mstn regulation of Igf1 and Igf2 expression. Therefore, the objective of this study was to quantify the expression of IGF family members in skeletal muscle and liver throughout the growth phase of Mstn null (MN) mice. Further, differences between male and female mice were investigated. METHODS: Male and female wild type (WT) and MN mice were euthanized at birth (0 d), 7 days (7 d), weaning (21 d), sexual maturity (42 d), and 70 d. For the neonatal periods, 0 d and 7 d, all muscles from the hind limbs were compiled for RNA extraction. At 21 d, 42 d, and 70 d, biceps femoris (BF), tibialis anterior, triceps brachii (TB), and gastrocnemius-soleus complex were collected. RESULTS: As expected, muscle weights were up to 90% greater in MN mice compared with WT mice at 21 d, 42 d and 70 d. However, Igf1 expression was reduced (P ≤ 0.04) at 7d and 21 d in MN mice compared to WT mice. Expression of Igf2 did not differ between genotypes at 0 d and 7d, but, at 21 d, 42 d and 70 d in BF and TB muscles, Igf2 expression was 1.9-2.9 fold greater (P<0.01) in MN compared to WT mice. Hepatic Igf1 and Igf2 levels were minimally affected by genotype; with the exception of a 1.4-fold reduction (P=0.04) in Igf1 expression in 21 d MN mice compared with WT mice. Though male mice were heavier than females starting at 21 d of age, expression differences in Igf1, Igf2, their receptors and binding proteins do not account for growth differences. In every case, when expression was different between sexes, female expression was increased despite increased growth in male mice. CONCLUSION: This study is the first to provide evidence that Mstn may negatively regulate Igf2 expression to control postnatal skeletal muscle growth, however differences in growth between male and female mice are not readily explained by changes in expression of Igf family members.


Assuntos
Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Miostatina/deficiência , Animais , Animais Recém-Nascidos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miostatina/genética , Miostatina/metabolismo , Tamanho do Órgão , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Caracteres Sexuais , Regulação para Cima
8.
BMC Physiol ; 14: 3, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24678801

RESUMO

BACKGROUND: Genes that decline in expression with age and are thought to coordinate growth cessation have been identified in various organs, but their expression in skeletal muscle is unknown. Therefore, our objective was to determine expression of these genes (Ezh2, Gpc3, Mdk, Mest, Mycn, Peg3, and Plagl1) in skeletal muscle from birth to maturity. We hypothesized that expression of these genes would decline with age in skeletal muscle but differ between sexes and between wild type and myostatin null mice. RESULTS: Female and male wild type and myostatin null mice (C57BL/6J background) were sacrificed by carbon dioxide asphyxiation followed by decapitation at d -7, 0, 21, 42, and 70 days of age. Whole bodies at d -7, all muscles from both hind limbs at d 0, and bicep femoris muscle from d 21, 42 and 70 were collected. Gene expression was determined by quantitative real-time PCR. In general, expression of these growth-regulating genes was reduced at d 21 compared with day 0 and d -7. Expression of Gpc3, Mest, and Peg3 was further reduced at d 42 and 70 compared with d 21, however the expression of Mycn increased from d 21 to d 42 and 70. Myostatin null mice, as expected, were heavier with increased biceps femoris weight at d 70. However, with respect to sex and genotype, there were few differences in expression. Expression of Ezh2 was increased at d 70 and expression of Mdk was increased at d 21 in myostatin null mice compared with wild type, but no other genotype effects were present. Expression of Mdk was increased in females compared to males at d 70, but no other sex effects were present. CONCLUSIONS: Overall, these data suggest the downregulation of these growth-regulating genes with age might play a role in the coordinated cessation of muscle growth similar to organ growth but likely have a limited role in the differences between sexes or genotypes.


Assuntos
Envelhecimento/genética , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Miostatina/genética , Animais , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...