Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
J Anat ; 242(3): 402-416, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36317926

RESUMO

Ear pinna is a particular feature of mammals that shows several repair responses depending on age. Two millimeter hole made in the pinna of middle-aged female mice heals due to partial reconstitution of new tissues (limited regeneration), whereas a hole punched in the ear of young mice forms a scar tissue. In these studies, the injury is made in the center of the ear pinna, but little is known about the type of reparative response along the proximodistal polarity of the ear. This study evaluated the effect of pinna polarity, age, and sex in the ear hole-repairing response in Balb/c mice. Proximal injuries were repaired more efficiently by limited regeneration than wounds made in the middle region. Non-injured ear histological analysis revealed a higher presence of muscle, adipose tissue, cartilage, and larger blood vessels in the proximal ear area, which could influence ear hole closure by limited regeneration. To evaluate the healing response during ear growth, we punched a standard hole in the proximal area of the ear on postnatal day 21 and 8-month-old mice (adults). Thirty-five days after the wound, both groups reached the same wound closure, despite the greater proportional size of holes made in the younger mice. Ear growth also improved ear hole closure in male mice. These results suggest that ear growth accelerates hole closure, providing an example of enhanced regenerative abilities in growing structures. Finally, hole closure kinetics in the growing ear indicated an early re-differentiation phase exhibited at 14 days post-wound. In conclusion, ear topography and growth positively influenced the healing response to ear holes, making it a tractable model to study in mammals.


Assuntos
Pavilhão Auricular , Regeneração , Camundongos , Animais , Masculino , Feminino , Regeneração/fisiologia , Mamíferos , Camundongos Endogâmicos BALB C , Cartilagem , Camundongos Endogâmicos C57BL
3.
J Cosmet Dermatol ; 22(2): 347-353, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36409429

RESUMO

BACKGROUND: Different strategies for hand skin hygiene have been used to prevent the spread of SARS-CoV-2. However, frequent hand sanitization has been associated with skin damage. The present study aimed to evaluate hand hygiene habits during the COVID-19 pandemic and the effect of the repetitive use of soap or alcohol-based products on skin characteristics. METHODS: We conducted a survey regards hand hygiene habits acquired during the COVID-19 pandemic. Also, we performed cutometry in a cohort of individuals who cleansed their volar forearms every 30 min, during 4 h, using soap or alcohol-based products. RESULTS: We received 138 responses from people with medium-high educational level who reported a 2.5-time increase in the frequency of hand cleansing (p < 0.0001) that resulted in skin damage. An in vivo analysis of skin moisture and elasticity was also performed among 19 health workers and students. In general, skin moisture decreased with every cleansing, mainly after 2 h of washing with soap (p < 0.01), while skin elasticity only reduced after 4 h of treatment (p < 0.05). Alcohol-based solution or alcohol-based gel (70% ethanol, both) did not affect skin moisture or elasticity during testing. CONCLUSION: It is known that the excessive use of soap or alcohol-based products causes dermatological issues. The present study demonstrates that non-medicated soap significantly affects skin moisture and elasticity, probably because the soap removes the hydrolipidic protective barrier, favoring transepidermal water loss, where the lack of the appropriate stratum corneum hydration also affects skin elasticity, mainly associated with changes in epidermal structure.


Assuntos
COVID-19 , Higiene das Mãos , Humanos , Sabões/uso terapêutico , Pandemias/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Etanol/efeitos adversos
4.
Microorganisms ; 10(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144427

RESUMO

In this work, we evaluated the direct effect of a dialkyl carbamoyl chloride (DACC)-coated dressing on Staphylococcus aureus adhesion and growth in vitro, as well as the indirect effect of the dressing on fibroblast and macrophage activity. S. aureus cultures were treated with the dressing or gauze in Müller-Hinton medium or serum-supplemented Dulbecco's modified Eagle medium. Bacterial growth and attachment were assessed through colony-forming units (CFU) and residual biomass analyses. Fibroblast and macrophage co-cultures were stimulated with filtered supernatants from the bacterial cultures treated with the DACC-coated dressing, following which tumor necrosis factor (TNF)-α/transforming growth factor (TGF)-ß1 expression and gelatinolytic activity were assessed by enzyme-linked immunosorbent assays (ELISA) and zymography, respectively. The DACC-coated dressing bound 1.8−6.1% of all of the bacteria in the culture. Dressing-treated cultures presented biofilm formation in the dressing (enabling mechanical removal), with limited formation outside of it (p < 0.001). Filtered supernatants of bacterial cultures treated with the DACC-coated dressing did not over-stimulate TNF-α or TGF-ß1 expression (p < 0.001) or increase gelatinolytic activity in eukaryotic cells, suggesting that bacterial cell integrity was maintained. Based on the above data, wound caregivers should consider the use of hydrophobic dressings as a first option for the management of acute or chronic wounds.

5.
J Ethnopharmacol ; 293: 115313, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35461988

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The bark of Amphipterygium adstringens Schiede ex Schltdl (Anacardiaceae), commonly known as 'cuachalalate' has been used in Mexican traditional medicine for the treatment of skin and oral lesions, gastric ulcers, and other conditions. The use as wound healing of the bark of this plant has been known since before the Spanish conquest of Mexico. Its uses are mentioned in the first writings of the Spanish in the 16th century. It is important to highlight that its use for wound healing treatment has no scientific previous reports. AIM OF THE STUDY: The objectives of this study were to determine the wound healing effect of the hydroalcoholic extract of the stem bark of Amphipterygium adstringens and its main metabolites, using a model of excision in the back of Wistar rats. To evaluate its antimicrobial effect against common bacteria that living on the skin of wounds and to evaluate its effect on angiogenesis. MATERIALS AND METHODS: The hydroalcoholic extract of cuachalalate (HAE, 10 mg/wound/day), the 3α-hydroxymasticadienoic acid (3 MA, 300 µg/wound/day), the masticadienoic acid (MA, 300 µg/wound/day), and a mixture of anacardic acids (ANA, 300 µg per wound) were tested in a murine excision model topically for 15 days, to evaluate their wound-healing effect. The results were reported in a wound closure percentage (n = 30 animals per treatment curve), using pirfenidone (PIR, 8% in vehicle) as a reference drug. In addition, histologic analysis was performed to evaluate the structure and quality of the scar. The effect on angiogenesis was assessed using the chick embryo chorioallantoic membrane (CAM) model (n = 6 eggs per treatment). The concentration evaluated for each treatment was 300 µg, using as proangiogenic reference drug the histamine (HIS, 5.6 µg) and as antiangiogenic drugs pirfenidone (9 µg) and acetylsalicylic acid (ASA, 9 µg). The antimicrobial test was performed against S. mutans, S. aureus, P. aeruginosa y E. coli using a minimum inhibitory concentration (MIC) assay. RESULTS: The 3α-hydroxymasticadienoic (3 MA) acid and the anacardic acids (ANA) improve the wound closure by approximates 30% (similar to pirfenidone) in comparison with the control-treated with the vehicle in the proliferative phase. On the other hand, the hydroalcoholic extract of cuachalalate (HAE) did not show an effect on the wound healing process. The histologic analysis demonstrated that the three main metabolites showed an improvement in the scar structure. According to the CAM results, it is probable that the main action mechanism of the 3α-hydroxymasticadienoic acid and the anacardic acids is related to their proangiogenic effect. In addition, ANA showed a modest antimicrobial effect. CONCLUSIONS: The 3α-hydroxymasticadienoic acid and anacardic acids showed a better tissue structure and reduced the time closure of the wound. In addition, the anacardic acids showed antimicrobial effects and both metabolites promote angiogenesis, suggesting that these effects may be related to their action mechanism. These metabolites of cuachalalate could be a good alternative for wound healing treatment.


Assuntos
Anacardiaceae , Ácidos Anacárdicos , Anacardiaceae/química , Ácidos Anacárdicos/química , Animais , Embrião de Galinha , Cicatriz , Escherichia coli , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Pseudomonas aeruginosa , Ratos , Ratos Wistar , Staphylococcus aureus , Cicatrização
6.
Microorganisms ; 10(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35456795

RESUMO

Electrolyzed acid solutions produced by different methods have antiseptic properties due to the presence of chlorine and reactive oxygen species. Our aim was to determine whether a controlled-flow electrolyzed acid solution (CFEAS) has the ability to improve wound healing due to its antiseptic and antibiofilm properties. First, we demonstrated in vitro that Gram-negative and Gram-positive bacteria were susceptible to CFEAS, and the effect was partially sustained for 24 h, evidencing antibiofilm activity (p < 0.05, CFEAS-treated vs. controls). The partial cytotoxicity of CFEAS was mainly observed in macrophages after 6 h of treatment; meanwhile, fibroblasts resisted short-lived free radicals (p < 0.05, CFEAS treated vs. controls), perhaps through redox-regulating mechanisms. In addition, we observed that a single 24 h CFEAS treatment of subacute and chronic human wounds diminished the CFU/g of tissue by ten times (p < 0.05, before vs. after) and removed the biofilm that was adhered to the wound, as we observed via histology from transversal sections of biopsies obtained before and after CFEAS treatment. In conclusion, the electrolyzed acid solution, produced by a novel method that involves a controlled flow, preserves the antiseptic and antibiofilm properties observed in other, similar formulas, with the advantage of being safe for eukaryotic cells; meanwhile, the antibiofilm activity is sustained for 24 h, both in vitro and in vivo.

7.
J Burn Care Res ; 43(5): 1160-1169, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018433

RESUMO

Grafting is the preferred treatment for severe skin burns. Frequently, allogeneic tissue is the only transient option for wound coverage, but their use risks damage to surrounding tissues. MicroRNAs have been associated with acute rejection of different tissues/organs. In this study, we analyzed the expression of miR-31, miR-155, and miR-221 and associate it with graft tolerance or rejection using a murine full-thickness skin transplantation model. Recipient animals for the syngeneic and allogeneic groups were BALB/c and C57BL/6 mice, respectively; donor tissues were obtained from BALB/c mice. After 7 days posttransplantation (DPT), the recipient skin and grafts in the syngeneic group maintained most of their structural characteristics and transforming growth factor (TGF)-ß1 and TGF-ß3 expression. Allografts were rejected early (Banff grades II and IV at 3 and 7 DPT, respectively), showing damage to the skin architecture and alteration of TGF-ß3 distribution. miRNAs skin expression changed in both mouse strains; miR-31 expression increased in the recipient skin of syngeneic grafts relative to that of allogeneic grafts at 3 and 7 DPT (P < .05 and P < .01, respectively); miR-221 expression increased in the same grafts at 7 DPT (P < .05). The only significant difference between donor tissues was observed for miR-155 expression at 7 DPT which was associated with necrotic tissue. Only miR-31 and miR-221 levels were increased in the blood of BALB/c mice that received syngeneic grafts after 7 DPT. Our data suggest that local and systemic miR-31 and miR-221 overexpression are associated with graft tolerance.


Assuntos
Queimaduras , Transplante de Células-Tronco Hematopoéticas , MicroRNAs , Animais , Queimaduras/genética , Queimaduras/cirurgia , Rejeição de Enxerto , Sobrevivência de Enxerto , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Transplante de Pele , Fator de Crescimento Transformador beta3 , Tolerância ao Transplante
8.
Genomics ; 114(1): 72-83, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861383

RESUMO

Hepatocellular carcinoma expressing hepatobiliary progenitor markers, is considered of poor prognosis. By using a hepatocarcinogenesis model, laser capture microdissection, and RNA-Sequencing analysis, we identified an expression profile in GGT/KRT19-positive experimental tumors; 438 differentially expressed genes were found in early and late nodules along with increased collagen deposition. Dysregulated genes were involved in Fatty Acid Metabolism, RXR function, and Hepatic Stellate Cells Activation. Downregulation of Slc27a5, Acsl1, and Cyp2e1, demonstrated that Retinoid X Receptor α (RXRα) function is compromised in GGT/KRT19-positive nodules. Since RXRα controls NRF2 pathway activation, we determined the expression of NRF2 targeted genes; Akr1b8, Akr7a3, Gstp1, Abcc3, Ptgr1, and Txnrd1 were upregulated, indicating NRF2 pathway activation. A comparative analysis in human HCC showed that SLC27A5, ACSL1, CYP2E1, and RXRα gene expression is mutually exclusive with KRT19 gene expression. Our results indicate that the downregulation of Slc27a5, Acsl1, Rxrα, and Cyp2e1 genes is an early event within GGT/KRT19-positive HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Ácidos Graxos , Humanos , Neoplasias Hepáticas/metabolismo , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo , Transcriptoma
9.
Pharmaceutics ; 13(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34684012

RESUMO

Metal-based nanoparticles are widely used to deliver bioactive molecules and drugs to improve cancer therapy. Several research works have highlighted the synthesis of gold and silver nanoparticles by green chemistry, using biological entities to minimize the use of solvents and control their physicochemical and biological properties. Recent advances in evaluating the anticancer effect of green biogenic Au and Ag nanoparticles are mainly focused on the use of conventional 2D cell culture and in vivo murine models that allow determination of the half-maximal inhibitory concentration, a critical parameter to move forward clinical trials. However, the interaction between nanoparticles and the tumor microenvironment is not yet fully understood. Therefore, it is necessary to develop more human-like evaluation models or to improve the existing ones for a better understanding of the molecular bases of cancer. This review provides recent advances in biosynthesized Au and Ag nanoparticles for seven of the most common and relevant cancers and their biological assessment. In addition, it provides a general idea of the in silico, in vitro, ex vivo, and in vivo models used for the anticancer evaluation of green biogenic metal-based nanoparticles.

10.
J Cell Commun Signal ; 15(1): 7-23, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33481173

RESUMO

The role of transforming growth factor ß TGFß/activin signaling in wound repair and regeneration is highly conserved in the animal kingdom. Various studies have shown that TGF-ß/activin signaling can either promote or inhibit different aspects of the regeneration process (i.e., proliferation, differentiation, and re-epithelialization). It has been demonstrated in several biological systems that some of the different cellular responses promoted by TGFß/activin signaling depend on the activation of Smad-dependent or Smad-independent signal transduction pathways. In the context of regeneration and wound healing, it has been shown that the type of R-Smad stimulated determines the different effects that can be obtained. However, neither the possible roles of Smad-independent pathways nor the interaction of the TGFß/activin pathway with other complex signaling networks involved in the regenerative process has been studied extensively. Here, we review the important aspects concerning the TGFß/activin signaling pathway in the regeneration process. We discuss data regarding the role of TGF-ß/activin in the most common animal regenerative models to demonstrate how this signaling promotes or inhibits regeneration, depending on the cellular context.

11.
Biochim Biophys Acta Gen Subj ; 1865(2): 129782, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33160011

RESUMO

BACKGROUND: Tissue replacement is among the most important challenges in biotechnology worldwide. SCOPE OF REVIEW: We aim to highlight the importance of the intricate feedback between rheological properties and materials science and cell biological parameters in order to obtain an efficient bioink design, supported by various practical examples. MAJOR CONCLUSIONS: Viscoelastic properties of bioink formulas, rheological properties, injection speed and printing nozzle diameter must be considered in bioink design. These properties are related to cell behavior and the survival rate during and after printing. Mechanosensing can strongly influence epigenetics to modify the final cell phenotype, which can affect the replacement tissue. GENERAL SIGNIFICANCE: In tissue engineering, biotechnologists must consider the biophysical properties and biological conditions of the materials used, as well as the material delivery mode (in a case or tissue) and maturation mode (curing or biomass), to ensure the development off appropriate materials mimicking the native tissue.


Assuntos
Materiais Biocompatíveis/química , Bioimpressão/métodos , Engenharia Tecidual/métodos , Animais , Sobrevivência Celular , Humanos , Reologia , Alicerces Teciduais/química , Viscosidade
12.
Int J Dev Biol ; 64(7-8-9): 423-432, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33063836

RESUMO

Transforming growth factor beta (TGFß) signalling is involved in several aspects of regeneration in many organs and tissues of primitive vertebrates. It has been difficult to recognize the role of this signal in mammal regeneration due to the low ability of this animal class to reconstitute tissues. Nevertheless, ear-holes in middle-age female mice represent a model to study the limited epimorphic-like regeneration in mammals. Using this model, in this study we explored the possible participation of TGFß signalling in mammal regeneration. Positive pSmad3 cells, as well as TGFß1 and TGFß3 isoforms, were detected during the redifferentiation phase in the blastema-like structure. Daily administration of the inhibitor of the TGFß intracellular pathway, SB431542, during 7 days from the re-differentiation phase, resulted in a decreased level of pSmad3 accompanied by a transitory higher growth of the new tissue, larger cartilage nodules, and new muscle formation. These phenotypes were associated with a decrease in the number of α-SMA-positive cells and loose packing of collagen I. These results indicate that the modulation of the fibrosis mediated by TGFß signalling contributes to enhancing the differentiation of cartilage and muscle during limited ear-hole regeneration.


Assuntos
Diferenciação Celular/fisiologia , Orelha/fisiopatologia , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Benzamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Dioxóis/farmacologia , Orelha/patologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibrose , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência/métodos , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta3/metabolismo
13.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118523, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31401107

RESUMO

Multicellular Tumor Spheroids culture (MCTS) is an in vitro model mimicking the characteristics of the tumor microenvironment, such as hypoxia and acidosis, resulting in the presence of both proliferating and quiescent cell populations. lncRNA's is a novel group of regulatory molecules that participates in the acquisition of tumorigenic phenotypes. In the present work we evaluated the oncogenic association of an uncharacterized lncRNA (lncRNA-HAL) in the tumorigenic phenotype induced by the MCTS microenvironment. We measured lncRNA-HAL expression level in MCF-7-MCTS populations and under different hypoxic conditions by RT-qPCR. Afterwards, we silenced lncRNA-HAL expression by shRNAs and evaluated its effect in MCF-7 transcriptome (by RNAseq) and validated the modified cellular processes by proliferation, migration, and stem cells assays. Finally, we analyzed which proteins interacts with lncRNA-HAL by ChIRP assay, to propose a possible molecular mechanism for this lncRNA. We found that lncRNA-HAL is overexpressed in the internal quiescent populations (p27 positive populations) of MCF-7-MCTS, mainly in the quiescent stem cell population, being hypoxia one of the microenvironmental cues responsible of its overexpression. Transcriptome analysis of lncRNA-HAL knockdown MCF7 cells revealed that lncRNA-HAL effect is associated with proliferation, migration and cell survival mechanisms; moreover, lncRNA-HAL silencing increased cell proliferation and impaired cancer stem cell proportion and function, resulting in decreased tumor grafting in vivo. In addition, we found that this lncRNA was overexpressed in triple-negative breast cancer patients. Analysis by ChIRP assay showed that this nuclear lncRNA binds to histones and hnRNPs suggesting a participation at the chromatin level and transcriptional regulation. The results obtained in the present work suggest that the function of lncRNA-HAL is associated with quiescent stem cell populations, which in turn is relevant due to its implications in cancer cell survival and resistance against treatment in vivo. Altogether, our data highlights a new lncRNA whose expression is regulated by the tumor microenvironment and associated to stemness in breast cancer.


Assuntos
Neoplasias da Mama/genética , RNA Longo não Codificante/genética , Microambiente Tumoral/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Inativação Gênica , Humanos , Células MCF-7 , Fenótipo , RNA Longo não Codificante/metabolismo , Células Tumorais Cultivadas
14.
J Mech Behav Biomed Mater ; 82: 310-319, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29653380

RESUMO

Fibrin and hyaluronic acid are important components of the provisional wound matrix. Through interactions with fibroblasts, they provide biophysical cues that regulate the viscoelastic properties of the extracellular matrix. To understand the roles of fibrin and hyaluronic acid in a collagenous environment, we used fibroblast populated collagen lattices (collagen, collagen-fibrin, and collagen-hyaluronic acid). Compared with collagen and collagen-hyaluronic acid cultures, collagen-fibrin cultures showed less contraction, which is correlated with increased elastic (G') and complex (|G*|) moduli, and reduced proportions of dendritic fibroblasts, despite increased αv integrin expression. Stiffness decreased during culture in collagen-fibrin environment, meanwhile phase shift (δ) values increased, clearly associated with the rise in fibrinolytic and gelatinolytic activities. These processes changed the viscoelastic properties of the system toward G' and |G*| values observed on day 5 in collagen cultures. Although less collagen turnover was observed in collagen-fibrin cultures than in collagen and collagen-hyaluronic acid cultures, collagen neosynthesis was apparently insufficient to contribute to the overall viscoelastic properties of the system. Collagen-hyaluronic acid cultures showed very limited changes during time. Firstly, they exhibited the highest δ values, suggesting an increase in the viscous behavior due to the hygroscopic properties of hyaluronic acid. These results showed that fibrin and hyaluronic acid not only affect differently the viscoelastic properties of the culture, they can tune fibroblastic activity by regulating cell attachment and extracellular matrix remodeling.


Assuntos
Colágeno/metabolismo , Fibrina/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Ácido Hialurônico/farmacologia , Fenômenos Mecânicos/efeitos dos fármacos , Fenômenos Biomecânicos/efeitos dos fármacos , Elasticidade/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Humanos , Viscosidade/efeitos dos fármacos
15.
Differentiation ; 99: 10-20, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29268236

RESUMO

IL-1 and TNF-α are always present during wound repair, but their pleiotropic and synergistic effects are incompletely understood. In this work, we evaluated the role of IL-1 in wound repair, and examined whether TNF-α administration impaired scarless wound repair. First, we characterised wound repair in outbred CD-1 mice according to age and sex in an ear punch wound model. Then, we examined the effects of Interleukin 1 receptor antagonist (IL-1ra) and TNF-α placement inside ear wounds by means of loaded Heparin beads in young and middle-aged male and female mice. Wounds in middle-aged females repaired with scarless characteristics, whereas those in young males showed fibrotic scarring. Rather than improving wound repair in young males, IL-1 signalling blockade increased epithelial thickness and IL-1ß and TNF-α expression, and diminished epidermal apoptosis. TNF-α impaired wound repair in middle-aged females, which exhibited acanthosis and overexpression of IL-1, but no change in apoptosis. These findings suggest that this mechanism of epidermal thickening differs from that observed in IL1-ra-treated animals.


Assuntos
Cicatriz/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Regeneração/efeitos dos fármacos
16.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1642-1655, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28576513

RESUMO

Multicellular Tumor Spheroids develop a heterogeneous micromilieu and different cell populations, thereby constituting a cancer model with intermediate characteristics between in vitro bi-dimensional cultures and in vivo tumors. Multicellular Tumor Spheroids also acquire tumor aggressiveness features due to transcription modulation of coding and non-coding RNA. Utilizing microarray analyses, we evaluated the microRNAs expression profile in MCF-7 breast cancer cells cultured as Multicellular Tumor Spheroids. The expression data was used to predict associated cellular and molecular functions using different software tools. The biological importance of two dysregulated miRNAs (miR-221-3p and miR-187) was studied by functional assays. Finally, the clinical relevance of these dysregulated miRNAs was explored using previously reported data. Thirty-three dysregulated microRNAs were found in MCF-7 Multicellular Tumor Spheroids. miRNA expression changes were closely linked with growth, proliferation, and cell development. miRNA-221-3p and miR-187 were implicated in the acquisition of migration/invasion capacities, sensitivity to the deprivation of growth factors, cell cycle phase regulation, and cell death. A panel of 5 miRNAs, including miR-187, showed a good predictive value in discriminating between low and high-risk groups of breast cancer.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Esferoides Celulares/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Esferoides Celulares/patologia
17.
J Tissue Viability ; 26(2): 131-137, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28162862

RESUMO

It has been reported that carbohydrates confer physicochemical properties to the wound environment that improves tissue repair. We evaluated in vitro and in vivo wound healing during maltodextrin/ascorbic acid treatment. In a fibroblast monolayer scratch assay, we demonstrated that maltodextrin/ascorbic acid stimulated monolayer repair by increasing collagen turnover coordinately with TGF-ß1 expression (rising TGF-ß1 and MMP-1 expression, as well as gelatinase activity, while TIMP-1 was diminished), similar to in vivo trends. On the other hand, we observed that venous leg ulcers treated with maltodextrin/ascorbic acid diminished microorganism population and improved wound repair during a 12 week period. When maltodextrin/ascorbic acid treatment was compared with zinc oxide, almost four fold wound closure was evidenced. Tissue architecture and granulation were improved after the carbohydrate treatment also, since patients that received maltodextrin/ascorbic acid showed lower type I collagen fiber levels and increased extracellular alkaline phosphatase activity and blood vessels than those treated with zinc oxide. We hypothesize that maltodextrin/ascorbic acid treatment stimulated tissue repair of chronic wounds by changing the stage of inflammation and modifying collagen turnover directly through fibroblast response.


Assuntos
Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Polissacarídeos/administração & dosagem , Úlcera Varicosa/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Administração Cutânea , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Colágeno Tipo III/efeitos dos fármacos , Combinação de Medicamentos , Feminino , Humanos , Estudos Longitudinais , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Distribuição Aleatória , Inibidor Tecidual de Metaloproteinase-1/efeitos dos fármacos , Fator de Crescimento Transformador beta1/efeitos dos fármacos , Úlcera Varicosa/microbiologia , Úlcera Varicosa/patologia , Óxido de Zinco/administração & dosagem
18.
Int Wound J ; 14(3): 470-479, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27282307

RESUMO

Topical antiseptics are widely used for wound treatment, with the goal of disrupting biofilm capacity. We analysed the effectiveness of a variety of antiseptics to inhibit various stages of biofilm formation and to remove biofilms in vitro as well as the agents' cytotoxic effects on fibroblasts. We found that the chlorine-releasing agents exhibited immediate anti-biofilm effects in the short term, with lesser cytotoxicity than agents prepared from more stable compounds, such as biguanide or modified diallyl disulfide-oxide, which, conversely, have better long-term effectiveness. Among the examined organisms, Gram-positive bacteria and Candida albicans were the most sensitive to the antiseptics, whereas Pseudomonas aeruginosa and Acinetobacter baumannii were relatively resistant to them. Formulations whose mechanisms of action involve the release of chemically active chlorine were more effective when administered in solution than the gel form, likely because of the stability of the active ingredients during or after preparation of the formula. Interestingly, hypochlorous acid and some superoxidation solutions were effective in preventing biofilm formation within a short time period and showed virtually no toxicity. Our study indicates that most antiseptics remain effective long enough to prevent biofilm formation; thus, even brief application of an antiseptic agent during initial wound treatment can lead to better wound management outcomes.


Assuntos
Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Humanos , Técnicas In Vitro , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
19.
Lung ; 193(1): 25-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25537934

RESUMO

INTRODUCTION: Surfactant protein D (SP-D) plays an important role in the innate responses against pathogens and its production is altered in lung disorders. METHODS: We studied the circulating levels of SP-D in 37 patients with acute respiratory distress syndrome due to the A/H1N1 virus infection and in 40 healthy controls. Cox logistic regression models were constructed to explore the association of SP-D levels and risk of death. RESULTS: Mortality rate after a 28-day was 32.42 %. Significant higher levels of SP-D were detected in A/H1N1 patients with fatal outcome (p < 0.05). After adjusting for confounding variables, levels of SP-D ≥250 ng/mL were associated with increased the risk of death (HR = 8.27, 95 % CI 1.1-64.1, p = 0.043). CONCLUSIONS: Our results revealed that higher circulating levels of SP-D are associated with higher mortality risk in critically ill A/H1N1 patients. SP-D might be a predictive factor of poor outcomes in viral pneumonia.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/diagnóstico , Pneumonia Viral/diagnóstico , Proteína D Associada a Surfactante Pulmonar/sangue , Síndrome do Desconforto Respiratório/diagnóstico , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Estado Terminal , Feminino , Mortalidade Hospitalar , Humanos , Influenza Humana/sangue , Influenza Humana/mortalidade , Influenza Humana/terapia , Influenza Humana/virologia , Estimativa de Kaplan-Meier , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Pneumonia Viral/sangue , Pneumonia Viral/mortalidade , Pneumonia Viral/terapia , Pneumonia Viral/virologia , Prognóstico , Modelos de Riscos Proporcionais , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/virologia , Fatores de Risco , Fatores de Tempo , Regulação para Cima
20.
J Phys Chem B ; 118(31): 9272-83, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25051159

RESUMO

Collagen-polyvinylpyrrolidone (C-PVP) is a copolymer that is generated from the γ irradiation of a mixture of type I collagen and low-molecular-weight PVP. It is characterized by immunomodulatory, fibrolytic, and antifibrotic properties. Here, we used various physicochemical and biological strategies to characterize the structure, biochemical susceptibility, as well as its effects on metabolic activity in fibroblasts. C-PVP contained 16 times more PVP than collagen, but only 55.8% of PVP was bonded. Nevertheless, the remaining PVP exerted strong structural activity due to the existence of weak bonds that provided shielding in the NMR spectra. On SEM and AFM, freeze-dried C-PVP appeared as a film that uniformly covered the collagen fibers. Size analysis revealed the presence of abundant PVP molecules in the solution of the copolymer with a unique dimension related to macromolecular combinations. Calorimetric analysis showed that the copolymer in solution exhibited structural changes at 110 °C, whereas the lyophilized form showed such changes at temperatures below 50 °C. The copolymer presented a rheopectic behavior, with a predominant effect of the collagen. C-PVP had biological effects on the expression of integrin α2 and prolyl-hydroxylase but did not interact with cells through the collagen receptors because it did not inhibit or slow contraction.


Assuntos
Colágeno/química , Povidona/química , Animais , Varredura Diferencial de Calorimetria , Técnicas de Cultura de Células , Colágeno/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Cinética , Teste de Materiais , Metaloproteinase 1 da Matriz/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Estrutura Molecular , Fotomicrografia , Povidona/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Reologia , Soluções , Suínos , Temperatura , Termografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...