Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Curr Biol ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39332400

RESUMO

How do animals evolve new traits? Sea robins are fish that possess specialized leg-like appendages used to "walk" along the sea floor. Here, we show that legs are bona fide sense organs that localize buried prey. Legs are covered in sensory papillae that receive dense innervation from touch-sensitive neurons, express non-canonical epithelial taste receptors, and mediate chemical sensitivity that drives predatory digging behavior. A combination of developmental analyses, crosses between species with and without papillae, and interspecies comparisons of sea robins from around the world demonstrate that papillae represent a key evolutionary innovation associated with behavioral niche expansion on the sea floor. These discoveries provide unique insight into how molecular-, cellular-, and tissue-scale adaptations integrate to produce novel organismic traits and behavior.

2.
Curr Biol ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39332403

RESUMO

A critical question in biology is how new traits evolve, but studying this in wild animals remains challenging. Here, we probe the genetic basis of trait gain in sea robin fish, which have evolved specialized leg-like appendages for locomotion and digging along the ocean floor. We use genome sequencing, transcriptional profiling, and interspecific hybrid analysis to explore the molecular and developmental basis of leg formation. We identified the ancient, conserved transcription factor tbx3a as a major determinant of sensory leg development. Genome editing confirms that tbx3a is required for normal leg formation in sea robins, and for formation of enlarged central nervous system lobes, sensory papillae, and adult digging behavior. Our study establishes sea robins as a model organism for studying the evolution of major trait gain and illustrates how ancient developmental control genes can underlie novel organ formation.

3.
Elife ; 122023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906220

RESUMO

Jellyfish and sea anemones fire single-use, venom-covered barbs to immobilize prey or predators. We previously showed that the anemone Nematostella vectensis uses a specialized voltage-gated calcium (CaV) channel to trigger stinging in response to synergistic prey-derived chemicals and touch (Weir et al., 2020). Here, we use experiments and theory to find that stinging behavior is suited to distinct ecological niches. We find that the burrowing anemone Nematostella uses uniquely strong CaV inactivation for precise control of predatory stinging. In contrast, the related anemone Exaiptasia diaphana inhabits exposed environments to support photosynthetic endosymbionts. Consistent with its niche, Exaiptasia indiscriminately stings for defense and expresses a CaV splice variant that confers weak inactivation. Chimeric analyses reveal that CaVß subunit adaptations regulate inactivation, suggesting an evolutionary tuning mechanism for stinging behavior. These findings demonstrate how functional specialization of ion channel structure contributes to distinct organismal behavior.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Evolução Biológica , Peçonhas
4.
bioRxiv ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37873105

RESUMO

A major goal in biology is to understand how organisms evolve novel traits. Multiple studies have identified genes contributing to regressive evolution, the loss of structures that existed in a recent ancestor. However, fewer examples exist for genes underlying constructive evolution, the gain of novel structures and capabilities in lineages that previously lacked them. Sea robins are fish that have evolved enlarged pectoral fins, six mobile locomotory fin rays (legs) and six novel macroscopic lobes in the central nervous system (CNS) that innervate the corresponding legs. Here, we establish successful husbandry and use a combination of transcriptomics, CRISPR-Cas9 editing, and behavioral assays to identify key transcription factors that are required for leg formation and function in sea robins. We also generate hybrids between two sea robin species with distinct leg morphologies and use allele-specific expression analysis and gene editing to explore the genetic basis of species-specific trait diversity, including a novel sensory gain of function. Collectively, our study establishes sea robins as a new model for studying the genetic basis of novel organ formation, and demonstrates a crucial role for the conserved limb gene tbx3a in the evolution of chemosensory legs in walking fish.

5.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37577638

RESUMO

Jellyfish and sea anemones fire single-use, venom-covered barbs to immobilize prey or predators. We previously showed that the anemone Nematostella vectensis uses a specialized voltage-gated calcium (CaV) channel to trigger stinging in response to synergistic prey-derived chemicals and touch (Weir et al., 2020). Here we use experiments and theory to find that stinging behavior is suited to distinct ecological niches. We find that the burrowing anemone Nematostella uses uniquely strong CaV inactivation for precise control of predatory stinging. In contrast, the related anemone Exaiptasia diaphana inhabits exposed environments to support photosynthetic endosymbionts. Consistent with its niche, Exaiptasia indiscriminately stings for defense and expresses a CaV splice variant that confers weak inactivation. Chimeric analyses reveal that CaVß subunit adaptations regulate inactivation, suggesting an evolutionary tuning mechanism for stinging behavior. These findings demonstrate how functional specialization of ion channel structure contributes to distinct organismal behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA