Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Microbiol ; 9(10): 2710-2726, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39191887

RESUMO

Aspergillus fumigatus causes aspergillosis and relies on asexual spores (conidia) for initiating host infection. There is scarce information about A. fumigatus proteins involved in fungal evasion and host immunity modulation. Here we analysed the conidial surface proteome of A. fumigatus, two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis, as well as pathogenic Aspergillus lentulus, to identify such proteins. After identifying 62 proteins exclusively detected on the A. fumigatus conidial surface, we assessed null mutants for 42 genes encoding these proteins. Deletion of 33 of these genes altered susceptibility to macrophage, epithelial cells and cytokine production. Notably, a gene that encodes a putative glycosylasparaginase, modulating levels of the host proinflammatory cytokine IL-1ß, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins are important for evasion and modulation of the immune response at the onset of fungal infection.


Assuntos
Aspergilose , Aspergillus fumigatus , Proteínas Fúngicas , Evasão da Resposta Imune , Proteoma , Esporos Fúngicos , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/genética , Animais , Esporos Fúngicos/imunologia , Camundongos , Proteoma/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/imunologia , Aspergilose/imunologia , Aspergilose/microbiologia , Humanos , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Citocinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino
2.
ACS Appl Mater Interfaces ; 12(25): 28801-28807, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32462863

RESUMO

The use of polyethylenimine (PEI) as a thin interlayer between cathodes and organic semiconductors in order to reduce interfacial Ohmic losses has become an important approach in organic electronics. It has also been shown that such interlayers can form spontaneously because of vertical phase separation when spin-coating a blended solution of PEI and the semiconductor. Furthermore, bulk doping of semiconducting polymers by PEI has been claimed. However, to our knowledge, a clear delineation of interfacial from bulk effects has not been published. Here, we report a study on thin films formed by spin-coating blended solutions of PEI and poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} [P(NDI2OD-T2)] on indium tin oxide. We observed the vertical phase separation in such films, where PEI accumulates at the bottom and the top, sandwiching the semiconductor layer. The PEI interlayer on ITO reduces the electron injection barrier to the minimum value determined by Fermi level pinning, which, in turn, reduces the contact resistance by 5 orders of magnitude. Although we find no evidence for doping-induced polarons in P(NDI2OD-T2) upon mixing with PEI from optical absorption, more sensitive electron paramagnetic resonance measurements provide evidence for doping and an increased carrier density, at a very low level. This, in conjunction with an increased charge carrier mobility due to trap filling, results in an increase in the mixed polymer conductivity by 4 orders of magnitude relative to pure P(NDI2OD-T2). Consequently, both interfacial and bulk effects occur with notable magnitude in thin films formed from blended semiconductor polymer/PEI solution. Thus, this facile one-step procedure to form PEI interlayers must be applied with attention, as modification of the bulk semiconductor polymer (here doping) may occur simultaneously and might go un-noticed if not examined carefully.

3.
Rev. bras. farmacogn ; 24(4): 389-398, Jul-Aug/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-725636

RESUMO

Cyanobacteria are prokaryotic and photosynthetic organisms, which can produce a wide range of bioactive compounds with different properties; including a variety of toxic compounds, also known as cyanotoxins. In this work, we describe the isolation of seven cyanobacterial strains from two reservoirs in São Paulo State, Brazil. Seven different chemical variants of microcystins (MC-RR, MC-LR, MC-YR, MC-LF, MC-LW, and two demethylated variants, dm-MC-RR and dm-MC-LR) were detected in three of the ten isolated strains. One particular Microcystis aeruginosa strain (LTPNA 02) was chosen to evaluate its growth by cell count, and its toxin production under seven different nutritional regimes. We observed different growth behaviors in the logarithmic growth period for only three experiments (p < 0.05). The total growth analysis identified four experiments as different from the control (p < 0.01). Three microcystin variants (MC-RR, MC-LR and MC-YR) were quantified by liquid chromatography-tandem mass spectrometry. At the experimental end, the toxin content was unchanged when comparing cell growth in ASM-1 (N:P = 1), MLA and BG-11 (N:P = 10) medium. In all other experiments, the lowest microcystin production was observed from cells grown in Bold 3N medium during the exponential growth phase. The highest microcystin content was observed in cultures using BG-11(N:P = 100) medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA