Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 971294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082160

RESUMO

Polycaprolactone (PCL) has recently received significant attention due to its mechanical strength, low immunogenicity, elasticity, and biodegradability. Therefore, it is perfectly suitable for cartilage tissue engineering. PCL is relatively hydrophobic in nature, so its hydrophilicity needs to be enhanced before its use in scaffolding. In our study, first, we aimed to improve the hydrophilicity properties after the network of the bilayer scaffold was formed by electrospinning. Electrospun bilayer PCL scaffolds were treated with ozone and further loaded with transforming growth factor-beta 3 (TGFß3). In vitro studies were performed to determine the rabbit muscle-derived stem cells' (rMDSCs) potential to differentiate into chondrocytes after the cells were seeded onto the scaffolds. Statistically significant results indicated that ozonated (O) scaffolds create a better environment for rMDSCs because collagen-II (Coll2) concentrations at day 21 were higher than non-ozonated (NO) scaffolds. In in vivo studies, we aimed to determine the cartilage regeneration outcomes by macroscopical and microscopical/histological evaluations at 3- and 6-month time-points. The Oswestry Arthroscopy Score (OAS) was the highest at both mentioned time-points using the scaffold loaded with TGFß3 and rMDSCs. Evaluation of cartilage electromechanical quantitative parameters (QPs) showed significantly better results in cell-treated scaffolds at both 3 and 6 months. Safranin O staining indicated similar results as in macroscopical evaluations-cell-treated scaffolds revealed greater staining with safranin, although an empty defect also showed better results than non-cell-treated scaffolds. The scaffold with chondrocytes represented the best score when the scaffolds were evaluated with the Mankin histological grading scale. However, as in previous in vivo evaluations, cell-treated scaffolds showed better results than non-cell-treated scaffolds. In conclusion, we have investigated that an ozone-treated scaffold containing TGFß3 with rMDSC is a proper combination and could be a promising scaffold for cartilage regeneration.

2.
Polymers (Basel) ; 14(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35746068

RESUMO

Polycaprolactone (PCL) is a non-cytotoxic, completely biodegradable biomaterial, ideal for cartilage tissue engineering. Despite drawbacks such as low hydrophilicity and lack of functional groups necessary for incorporating growth factors, it provides a proper environment for different cells, including stem cells. In our study, we aimed to improve properties of scaffolds for better cell adherence and cartilage regeneration. Thus, electrospun PCL-scaffolds were functionalized with ozone and loaded with TGF-ß3. Together, human-muscle-derived stem cells (hMDSCs) were isolated and assessed for their phenotype and potential to differentiate into specific lineages. Then, hMDSCs were seeded on ozonated (O) and non-ozonated ("naïve" (NO)) scaffolds with or without protein and submitted for in vitro and in vivo experiments. In vitro studies showed that hMDSC and control cells (human chondrocyte) could be tracked for at least 14 days. We observed better proliferation of hMDSCs in O scaffolds compared to NO scaffolds from day 7 to day 28. Protein analysis revealed slightly higher expression of type II collagen (Coll2) on O scaffolds compared to NO on days 21 and 28. We detected more pronounced formation of glycosaminoglycans in the O scaffolds containing TGF-ß3 and hMDSC compared to NO and scaffolds without TGF-ß3 in in vivo animal experiments. Coll2-positive extracellular matrix was observed within O and NO scaffolds containing TGF-ß3 and hMDSC for up to 8 weeks after implantation. These findings suggest that ozone-treated, TGF-ß3-loaded scaffold with hMDSC is a promising tool in neocartilage formation.

3.
Carbohydr Polym ; 285: 119260, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35287873

RESUMO

The importance of the cellulose cycle has been increasing during the last decade along the ambitious targets of bioeconomy, however many novel fabrication processes yet lack of technological robustness. We present the optimization process for the fabrication of cellulose fibrous matrix by wet electrospinning via the controlled removal of the ionic liquids in order to avoid the formation of film-like structures. Fibers were produced on a bespoke wet-type electrospinning rig from cotton cellulose solutions of 3% in different types of ionic liquids (BMIMAc/C10MIMCl/EMIMAc). Three stage elution with a range of elution ratios using deionized water were applied to coagulate cellulose and remove residuals of ionic liquid. A variety of fibrous morphologies has been obtained. In case of a high water/IL ratio, the median fiber width across all ionic liquids was 0.4 µm, with the porosity at 92.3% and the pore diameter at 155 µm. The increasing elution ratio positively affected separate cellulose fiber formation, crystallinity, and mechanical strength of formed structures.

4.
Pharmaceutics ; 13(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34452249

RESUMO

Ozonation has been proved as a viable surface modification technique providing certain properties to the scaffolds that are essential in tissue engineering. However, the ozone (O3) treatment of PCL scaffolds in aqueous environments has not yet been presented. O3 treatment performed in aqueous environments is more effective compared with traditional, executed in ambient air treatment due to more abundant production of hydroxyl radicals (•OH) within the O3 reaction with water molecules. During interaction with •OH, the scaffold acquires functional groups which improve wettability properties and encapsulate growth factors. In this study, a poly(ε)caprolactone (PCL) scaffold was fabricated using solution electrospinning and was subsequently ozonated in a water reactor. The O3 treatment resulted in the expected occurrence of oxygen-containing functional groups, which improved scaffold wettability by almost 27% and enhanced cell proliferation for up to 14 days. The PCL scaffold was able to withhold 120 min of O3 treatment, maintaining fibrous morphology and mechanical properties.

5.
J Environ Manage ; 298: 113466, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371223

RESUMO

Novel highly porous nanoparticle materials are increasingly being applied in adsorption processes, but they need to be supported by robust matrixes to maintain their functionality. We present a study of hosting graphene oxide (GO) particles on polyether block amide (PEBA) melt electrospun fibers and applying such composite matrix to the adsorption of the cationic dye (crystal violet) from water. Various amounts of GO (from 0.5 to 2.0%) were mixed into pure PEBA and electrospun by melt electrospinning obtaining micro fibrous matrixes. These were characterized for morphology (SEM), chemical composition (FTIR), crystallinity (XRD), and wetting behavior (WCA). The increasing amount of GO adversely affected fiber diameter (reduced from 13.18 to 4.38 µm), while the hydrophilic properties (Water contact angle decrease from 109 to 76°) and overall dye adsorption was increased. Efficient adsorption has been demonstrated, reaching approximately 100 % removal efficiency using a 2% GO composite matrix at a dose of 40 mg/l and pH of 10. Further increase of GO concentration in polymer is not feasible due to instability in the electrospinning process.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Amidas , Elastômeros , Águas Residuárias
6.
Polymers (Basel) ; 12(4)2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260569

RESUMO

Polyether block amide (PEBA) nanocomposite membranes, including Graphene (GA)/PEBA membranes are considered to be a promising emerging technology for removing CO2 from natural gas and biogas. However, poor dispersion of GA in the produced membranes at industrial scale still forms the main barrier to commercialize. Within this frame, this research aims to develop a new industrial approach to produce GA/PEBA granules that could be used as a feedstock material for mass production of GA/PEBA membranes. The developed approach consists of three sequential phases. The first stage was concentrated on production of GA/PEBA granules using extrusion process (at 170-210 °C, depending on GA concentration) in the presence of Paraffin Liquid (PL) as an adhesive layer (between GA and PEBA) and assisted melting of PEBA. The second phase was devoted to production of GA/PEBA membranes using a solution casting method. The last phase was focused on evaluation of CO2/CH4 selectivity of the fabricated membranes at low and high temperatures (25 and 55 °C) at a constant feeding pressure (2 bar) using a test rig built especially for that purpose. The granules and membranes were prepared with different concentrations of GA in the range 0.05 to 0.5 wt.% and constant amount of PL (2 wt.%). Also, the morphology, physical, chemical, thermal, and mechanical behaviors of the synthesized membranes were analyzed with the help of SEM, TEM, XRD, FTIR, TGA-DTG, and universal testing machine. The results showed that incorporation of GA with PEBA using the developed approach resulted in significant improvements in dispersion, thermal, and mechanical properties (higher elasticity increased by ~10%). Also, ideal CO2/CH4 selectivity was improved by 29% at 25 °C and 32% at 55 °C.

7.
Materials (Basel) ; 13(4)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079187

RESUMO

The present study investigates Mg (0 ÷ 17.5 wt %), Cu (0 ÷ 21 wt %) and Ni (0 ÷ 20.2 wt %) dopants (M-doped) influence on photocatalytic activity of amorphous TiO2 thin films. Magnetron sputtering was used for the deposition of M-doped TiO2 thin films. According to SEM/EDS surface analysis, the magnetron sputtering technique allows making M-doped TiO2 thin films with high uniformity and high dopant dispersion. Photocatalysis efficiency analysis was set in oxalic acid under UV irradiation. In accordance with the TOC (total organic carbon) measurements followed by the apparent rate constant (kapp) results, the dopants' concentration peak value was dopant-dependent; for Mg/TiO2, it is 0.9% (kapp-0.01866 cm-1), for Cu/TiO2, it is 0.6% (kapp-0.02221 cm-1), and for Ni/TiO2, it is 0.5% (kapp-0.01317 cm-1). The obtained results clearly state that a concentration of dopants in TiO2 between 0.1% and 0.9% results in optimal photocatalytic activity.

8.
Chemosphere ; 223: 474-482, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30784754

RESUMO

Aerosol particle, carbonyl, and nicotine concentrations were analysed as pollutants affecting indoor air quality during the usage of electrically-heated tobacco product - the Tobacco Heating System (THS). Quantitative experimental variables included THS use intensity as number of parallel users (1, 3, or 5), distance to the bystander (0.5, 1, or 2 m), as well as environmental conditions in a chamber: ventilation intensity as air changes per hour (0.2, 0.5, or 1 h-1), and relative humidity (RH, 30, 50 or 70%). The real-time particle number (PNC), CO and CO2 concentration, as well as off-line acetaldehyde, formaldehyde, nicotine, and 3-ethenylpyridine concentration was measured during and after the active usage. Use of THS resulted in a statistically significant increase of several analytes including nicotine, acetaldehyde, PM2.5, and PNC as compared to the background. The obtained levels were significantly lower (approximately 16, 8, 8 and 28 times for nicotine, acetaldehyde, PNC and PM2.5, respectively) compared to the levels resulting from conventional cigarette (CC) smoking under identical conditions. The maximum 30 min concentration of PNC (4.8 × 105 #/cm3), as well as maximum concentration of PNC (9.3 × 106 #/cm3) suggest that the intensive use of THS in a confined space with limited ventilation might cause substantially elevated aerosol concentrations, although these particles appeared as highly volatile ones and evaporated within seconds. Generally, the usage intensity (number of simultaneous users) prevailed as the most important factor positively affecting pollutant variations; another important factor was the distance to bystander.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Calefação/métodos , Nicotiana/metabolismo , Produtos do Tabaco/análise , Poluição por Fumaça de Tabaco/análise , Aerossóis , Humanos
9.
Environ Sci Pollut Res Int ; 25(32): 32277-32291, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30225694

RESUMO

Atmospheric particulate matter (PM) constitutes the major part of urban air pollution and is a heterogeneous mixture of solid and liquid particles of different origin, size, and chemistry. Human exposure to PM in urban areas poses considerable and significant adverse effects on the respiratory system and human health in general. Major contributors to PM content are combustion-related sources such as diesel vehicles, household, and industrial heating. PM is composed of thousands of different high molecular weight organic compounds, including poly-aromatic hydrocarbons (PAHs). The aim of this study was to clarify the cytotoxic effects of the extract of actual urban PM1 with high benzo[a]pyrene (BaP) content collected in Eastern European mid-sized city during winter heating season on human bronchial epithelial cells (BEAS-2B). Decreased cell viability, alteration of cell layer integrity, increased apoptosis, and oxidative stress were observed during the 3-day exposure to the PM extract. In addition, following PM exposure pro-inflammatory cytokine expression was upregulated at gene and protein levels. Morphology and motility changes, i.e., decreased cells' ability to cover scratch area, were also documented. We report here that the extract of urban PM1 may induce bronchial epithelium changes and render it pro-inflammatory and compromised within 3 days.


Assuntos
Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Células Epiteliais/efeitos dos fármacos , Humanos , Indústrias , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/análise , Estações do Ano , Testes de Toxicidade
10.
Environ Technol ; 39(17): 2215-2222, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28685642

RESUMO

The paper presents a study on the treatment of the furniture industry wastewater in a bench scale advanced oxidation reactor. The researched technology utilized a simultaneous application of ozone, ultraviolet radiation and surface-immobilized TiO2 nanoparticle catalyst. Various combinations of processes were tested, including photolysis, photocatalysis, ozonation, catalytic ozonation, photolytic ozonation and photocatalytic ozonation were tested against the efficiency of degradation. The efficiency of the processes was primarily characterized by the total organic carbon (TOC) analysis, indicating the remaining organic material in the wastewater after the treatment, while the toxicity changes in wastewater were researched by Daphnia magna toxicity tests. Photocatalytic ozonation was confirmed as the most effective combination of processes (99.3% of TOC reduction during 180 min of treatment), also being the most energy efficient (4.49-7.83 MJ/g). Photocatalytic ozonation and photolytic ozonation remained efficient across a wide range of pH (3-9), but the pH was an important factor in photocatalysis. The toxicity of wastewater depended on the duration of the treatment: half treated water was highly toxic, while fully treated water did not possess any toxicity. Our results indicate that photocatalytic ozonation has a high potential for the upscaling and application in industrial settings.


Assuntos
Águas Residuárias , Purificação da Água , Animais , Daphnia , Resíduos Industriais , Decoração de Interiores e Mobiliário , Oxirredução , Ozônio , Raios Ultravioleta , Poluentes Químicos da Água/toxicidade
11.
Environ Sci Pollut Res Int ; 24(21): 17584-17597, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28597387

RESUMO

A bench-scale advanced oxidation (AO) reactor was investigated for the degradation of six pollutants (2-naphthol, phenol, oxalic acid, phthalate, methylene blue, and D-glucose) in a model wastewater at with the aim to test opportunities for the further upscale to industrial applications. Six experimental conditions were designed to completely examine the experimental reactor, including photolysis, photocatalysis, ozonation, photolytic ozonation, catalytic ozonation, and photocatalytic ozonation. The stationary catalyst construction was made from commercially available TiO2 nanopowder by mounting it on a glass support and subsequently characterized for morphology (X-ray diffraction analysis and scanning electron microscopy) as well as durability. The ozone was generated in a dielectrical barrier discharge reactor using air as a source of oxygen. The degradation efficiency was estimated by the decrease in total organic carbon (TOC) concentration as well as toxicity using Daphnia magna, and degradation by-products by ultra-performance liquid chromatography-mass spectrometry. The photocatalytic ozonation was the most effective for the treatment of all model wastewater. The photocatalytic ozonation was most effective against ozonation and photolytic ozonation at tested pH values. A complete toxicity loss was obtained after the treatment using photocatalytic ozonation. The possible degradation pathway of the phthalate by oxidation was suggested based on aromatic ring opening reactions. The catalyst used at this experiment confirmed as a durable for continuous use with almost no loss of activity over time. The design of the reactor was found to be very effective for water treatment using photocatalytic ozonation. Such design has a high potential and can be further upscaled to industrial applications due to the simplicity and versatility of manufacturing and maintenance.


Assuntos
Ozônio , Águas Residuárias , Poluentes da Água/química , Catálise , Naftóis , Poluentes Químicos da Água
12.
Environ Technol ; 37(11): 1315-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26583905

RESUMO

The purpose of this study was to determine the properties of fibrous gas filtration media produced from mineral zeolite. Fibres were generated by direct current plasma spray. The paper characterizes morphology, chemical composition, geometrical structure of elementary fibres, and thermal resistance, as well as the filtration properties of fibre media. The diameter of the produced elementary fibres ranged from 0.17 to 0.90 µm and the length ranged from 0.025 to 5.1 mm. The release of fibres from the media in the air stream was noticed, but it was minimized by hot-pressing the formed fibre mats. The fibres kept their properties up to the temperature of 956°C, while further increase in temperature resulted in the filter media becoming shrunk and brittle. The filtration efficiency of the prepared filter mats ranged from 95.34% to 99.99% for aerosol particles ranging in a size between 0.03 and 10.0 µm. Unprocessed fibre media showed the highest filtration efficiency when filtering aerosol particles smaller than 0.1 µm. Hot-pressed filters were characterized by the highest quality factor values, ranging from 0.021 to 0.064 Pa(-1) (average value 0.034 Pa(-1)).


Assuntos
Aerossóis/isolamento & purificação , Poluentes Atmosféricos/isolamento & purificação , Filtração/métodos , Fibras Minerais/análise , Zeolitas/química , Aerossóis/química , Poluentes Atmosféricos/química , Tamanho da Partícula , Temperatura
13.
J Environ Monit ; 13(1): 182-91, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21082095

RESUMO

This complex study presents indoor and outdoor levels of air-borne fine particles, particle-bound PAHs and VOCs at two urban locations in the city of Kaunas, Lithuania, and considers possible sources of pollution. Two sampling campaigns were performed in January-February and March-April 2009. The mean outdoor PM(2.5) concentration at Location 1 in winter was 34.5 ± 15.2 µg m(-3) while in spring it was 24.7 ± 12.2 µg m(-3); at Location 2 the corresponding values were 36.7 ± 21.7 and 22.4 ± 19.4 µg m(-3), respectively. In general there was little difference between the PM concentrations at Locations 1 and 2. PM(2.5) concentrations were lower during the spring sampling campaign. These PM concentrations were similar to those in many other European cities; however, the levels of most PAHs analysed were notably higher. The mean sum PAH concentrations at Locations 1 and 2 in the winter campaign were 75.1 ± 32.7 and 32.7 ± 11.8 ng m(-3), respectively. These differences are greater than expected from the difference in traffic intensity at the two sites, suggesting that there is another significant source of PAH emissions at Location 1 in addition to the traffic. The low observed indoor/outdoor (I/O) ratios indicate that PAH emissions at the locations studied arise primarily from outdoor sources. The buildings at both locations have old windows with wooden frames that are fairly permissive in terms of air circulation. VOC concentrations were mostly low and comparable to those reported from Sweden. The mean outdoor concentrations of VOC's were: 0.7 ± 0.2, 3.0 ± 0.8, 0.5 ± 0.2, 3.5 ± 0.3, and 0.2 ± 0.1 µg m(-3), for benzene, toluene, ethylbenzene, sum of m-, p-, o-xylenes, and naphthalene, respectively. Higher concentrations of VOCs were observed during the winter campaign, possibly due to slower dispersion, slower chemical transformations and/or the lengthy "cold start" period required by vehicles in the wintertime. A trajectory analysis showed that air masses coming from Eastern Europe carried significantly higher levels of PM(2.5) compared to masses from other regions, but the PAHs within the PM(2.5) are of local origin. It has been suggested that street dust, widely used for winter sanding activities in Eastern and Central European countries, may act not only as a source of PM, but also as source of particle-bound PAHs. Other potential sources include vehicle exhaust, domestic heating and long-range transport.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Compostos Orgânicos Voláteis/análise , Ar/análise , Ar/normas , Cidades , Lituânia , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...