Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 5069, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498210

RESUMO

Mutant p53s (mutp53) increase cancer invasiveness by upregulating Rab-coupling protein (RCP) and diacylglycerol kinase-α (DGKα)-dependent endosomal recycling. Here we report that mutp53-expressing tumour cells produce exosomes that mediate intercellular transfer of mutp53's invasive/migratory gain-of-function by increasing RCP-dependent integrin recycling in other tumour cells. This process depends on mutp53's ability to control production of the sialomucin, podocalyxin, and activity of the Rab35 GTPase which interacts with podocalyxin to influence its sorting to exosomes. Exosomes from mutp53-expressing tumour cells also influence integrin trafficking in normal fibroblasts to promote deposition of a highly pro-invasive extracellular matrix (ECM), and quantitative second harmonic generation microscopy indicates that this ECM displays a characteristic orthogonal morphology. The lung ECM of mice possessing mutp53-driven pancreatic adenocarcinomas also displays increased orthogonal characteristics which precedes metastasis, indicating that mutp53 can influence the microenvironment in distant organs in a way that can support invasive growth.


Assuntos
Exossomos/metabolismo , Sialoglicoproteínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Exossomos/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Microscopia de Força Atômica , Mutação/genética , Sialoglicoproteínas/genética , Sialomucinas/genética , Sialomucinas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
2.
Cell Metab ; 28(5): 721-736.e6, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30122553

RESUMO

Numerous mechanisms to support cells under conditions of transient nutrient starvation have been described. Several functions of the tumor-suppressor protein p53 can contribute to the adaptation of cells to metabolic stress and help cancer cell survival under nutrient-limiting conditions. We show here that p53 promotes the expression of SLC1A3, an aspartate/glutamate transporter that allows the utilization of aspartate to support cells in the absence of extracellular glutamine. Under glutamine deprivation, SLC1A3 expression maintains electron transport chain and tricarboxylic acid cycle activity, promoting de novo glutamate, glutamine, and nucleotide synthesis to rescue cell viability. Tumor cells with high levels of SLC1A3 expression are resistant to glutamine starvation, and SLC1A3 depletion retards the growth of these cells in vitro and in vivo, suggesting a therapeutic potential for SLC1A3 inhibition.


Assuntos
Transportador 1 de Aminoácido Excitatório/metabolismo , Glutamina/metabolismo , Neoplasias/metabolismo , Inanição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adaptação Fisiológica , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Ciclo do Ácido Cítrico , Feminino , Humanos , Camundongos Endogâmicos BALB C
3.
Cell Rep ; 23(11): 3381-3391.e4, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29898406

RESUMO

Although much is known about how chromosome segregation is coupled to cell division, how intracellular organelles partition during mitotic division is poorly understood. We report that the phosphorylation-dependent degradation of the ARFGEF GBF1 regulates organelle trafficking during cell division. We show that, in mitosis, GBF1 is phosphorylated on Ser292 and Ser297 by casein kinase-2 allowing recognition by the F-box protein ßTrCP. GBF1 interaction with ßTrCP recruits GBF1 to the SCFßTrCP ubiquitin ligase complex, triggering its degradation. Phosphorylation and degradation of GBF1 occur along microtubules at the intercellular bridge of telophase cells and are required for Golgi membrane positioning and postmitotic Golgi reformation. Indeed, expression of a non-degradable GBF1 mutant inhibits the transport of the Golgi cluster adjacent to the midbody toward the Golgi twin positioned next to the centrosome and results in defective Golgi reassembly and cytokinesis failure. These findings define a mechanism that controls postmitotic Golgi reassembly and inheritance.


Assuntos
Citocinese , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Centrossomo/metabolismo , Citocinese/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Microscopia Confocal , Mitose , Mutagênese , Nocodazol/farmacologia , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Imagem com Lapso de Tempo , Proteínas Contendo Repetições de beta-Transducina/antagonistas & inibidores , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo
5.
Nature ; 544(7650): 372-376, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28425994

RESUMO

The non-essential amino acids serine and glycine are used in multiple anabolic processes that support cancer cell growth and proliferation (reviewed in ref. 1). While some cancer cells upregulate de novo serine synthesis, many others rely on exogenous serine for optimal growth. Restriction of dietary serine and glycine can reduce tumour growth in xenograft and allograft models. Here we show that this observation translates into more clinically relevant autochthonous tumours in genetically engineered mouse models of intestinal cancer (driven by Apc inactivation) or lymphoma (driven by Myc activation). The increased survival following dietary restriction of serine and glycine in these models was further improved by antagonizing the anti-oxidant response. Disruption of mitochondrial oxidative phosphorylation (using biguanides) led to a complex response that could improve or impede the anti-tumour effect of serine and glycine starvation. Notably, Kras-driven mouse models of pancreatic and intestinal cancers were less responsive to depletion of serine and glycine, reflecting an ability of activated Kras to increase the expression of enzymes that are part of the serine synthesis pathway and thus promote de novo serine synthesis.


Assuntos
Glicina/deficiência , Neoplasias Intestinais/dietoterapia , Neoplasias Intestinais/metabolismo , Linfoma/dietoterapia , Linfoma/metabolismo , Serina/deficiência , Animais , Antioxidantes/metabolismo , Biguanidas/farmacologia , Linhagem Celular Tumoral , Dieta , Modelos Animais de Doenças , Feminino , Privação de Alimentos , Glicina/metabolismo , Humanos , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Linfoma/patologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estado Nutricional , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias Pancreáticas/dietoterapia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Serina/biossíntese , Serina/metabolismo , Serina/farmacologia , Taxa de Sobrevida
6.
Nat Rev Mol Cell Biol ; 16(7): 393-405, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26122615

RESUMO

The function of p53 as a tumour suppressor has been attributed to its ability to promote cell death or permanently inhibit cell proliferation. However, in recent years, it has become clear that p53 can also contribute to cell survival. p53 regulates various metabolic pathways, helping to balance glycolysis and oxidative phosphorylation, limiting the production of reactive oxygen species, and contributing to the ability of cells to adapt to and survive mild metabolic stresses. Although these activities may be integrated into the tumour suppressive functions of p53, deregulation of some elements of the p53-induced response might also provide tumours with a survival advantage.


Assuntos
Morte Celular , Sobrevivência Celular , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos
7.
Sci Signal ; 5(227): ra40, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22669845

RESUMO

The kinase eEF2K [eukaryotic elongation factor 2 (eEF2) kinase] controls the rate of peptide chain elongation by phosphorylating eEF2, the protein that mediates the movement of the ribosome along the mRNA by promoting translocation of the transfer RNA from the A to the P site in the ribosome. eEF2K-mediated phosphorylation of eEF2 on threonine 56 (Thr56) decreases its affinity for the ribosome, thereby inhibiting elongation. Here, we show that in response to genotoxic stress, eEF2K was activated by AMPK (adenosine monophosphate-activated protein kinase)-mediated phosphorylation on serine 398. Activated eEF2K phosphorylated eEF2 and induced a temporary ribosomal slowdown at the stage of elongation. Subsequently, during DNA damage checkpoint silencing, a process required to allow cell cycle reentry, eEF2K was degraded by the ubiquitin-proteasome system through the ubiquitin ligase SCF(ßTrCP) (Skp1-Cul1-F-box protein, ß-transducin repeat-containing protein) to enable rapid resumption of translation elongation. This event required autophosphorylation of eEF2K on a canonical ßTrCP-binding domain. The inability to degrade eEF2K during checkpoint silencing caused sustained phosphorylation of eEF2 on Thr56 and delayed the resumption of translation elongation. Our study therefore establishes a link between DNA damage signaling and translation elongation.


Assuntos
Quinase do Fator 2 de Elongação/metabolismo , Mutagênicos/toxicidade , Biossíntese de Proteínas , Estresse Fisiológico , Adenilato Quinase/metabolismo , Dano ao DNA , Ativação Enzimática , Fosforilação , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...