Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; (17): 3306-14, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19421633

RESUMO

ECE-pincer sulfato palladium complexes (pincer = [C(6)H(3)(CH(2)E)(2)-2,6](-); E = SPh (), SMe (), S(t)Bu (), NMe(2) ()) were synthesized and characterized. In the solid-state (X-ray determinations) and exist as neutral ECE-pincer palladium sulfato complexes with a mu(2)-O,O' bridging sulfato ligand. IR and Raman spectroscopic studies revealed that in the solid-state the complexes can be present as either solely neutral or as a mixture of neutral and ionic species, depending on the preparation and morphology of the solids. In water, ionic complexes with non-coordinating sulfate ions prevail. Preliminary studies of the catalytic activity of in the Suzuki-Miyaura C-C cross-coupling reaction of 3-iodobenzoic acid and sodium tetraphenylborate in water reveal that the C-C cross-coupling product is efficiently formed in good yields at room temperature.


Assuntos
Paládio/química , Sulfatos/química , Catálise , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Soluções , Análise Espectral Raman
2.
Chemistry ; 15(17): 4270-80, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19219875

RESUMO

The first crystal structures of lipases that have been covalently modified through site-selective inhibition by different organometallic phosphonate-pincer-metal complexes are described. Two ECE-pincer-type d(8)-metal complexes, that is, platinum (1) or palladium (2) with phosphonate esters (ECE = [(EtO)-(O=)P(-O-C(6)H(4)-(NO(2))-4)(-C(3)H(6)-4-(C(6)H(2)-(CH(2)E)(2))](-); E = NMe(2) or SMe) were introduced prior to crystallization and have been shown to bind selectively to the Ser(120) residue in the active site of the lipase cutinase to give cut-1 (platinum) or cut-2 (palladium) hybrids. For all five presented crystal structures, the ECE-pincer-platinum or -palladium head group sticks out of the cutinase molecule and is exposed to the solvent. Depending on the nature of the ECE-pincer-metal head group, the ECE-pincer-platinum and -palladium guests occupy different pockets in the active site of cutinase, with concomitant different stereochemistries on the phosphorous atom for the cut-1 (S(P)) and cut-2 (R(P)) structures. When cut-1 was crystallized under halide-poor conditions, a novel metal-induced dimeric structure was formed between two cutinase-bound pincer-platinum head groups, which are interconnected through a single mu-Cl bridge. This halide-bridged metal dimer shows that coordination chemistry is possible with protein-modified pincer-metal complexes. Furthermore, we could use NCN-pincer-platinum complex 1 as site-selective tool for the phasing of raw protein diffraction data, which shows the potential use of pincer-platinum complex 1 as a heavy-atom derivative in protein crystallography.


Assuntos
Hidrolases de Éster Carboxílico/química , Modelos Químicos , Compostos Organometálicos/química , Paládio/química , Platina/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Conformação Proteica
3.
Chemistry ; 14(29): 8995-9005, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18720496

RESUMO

Glycerol is considered a potential renewable building block for the synthesis of existing as well as new chemicals. A promising route is the telomerization of 1,3-butadiene with glycerol leading to C8 chain ethers of glycerol with applications in, for example, surfactant chemistry. Recently, we reported a new set of palladium-based homogeneous catalytic systems for the telomerization of 1,3-butadiene with glycerol and found that palladium complexes bearing methoxy-functionalized triphenylphosphine ligands are highly active catalysts capable of converting crude glycerol without any significant loss of activity. Herein, we present a detailed account of these investigations by reporting on the influence of the butadiene/glycerol ratio, temperature, and reaction time on product selectivity and activity allowing further optimization of catalyst performance. Maximum activity and yield were reached for high 1,3-butadiene/glycerol ratios at a temperature of 90 degrees C, whereas the selectivity for mono- and diethers of glycerol could be optimized by combining high reaction temperatures and short reaction times with low butadiene/glycerol ratios. Variation of the PdII metal precursors and the metal/ligand ratio showed that palladium precursors with halogen ligands gave unsatisfying results, in contrast to precursors with weakly coordinated ligands such as [Pd(OAc)2] and [Pd(acac)2]. [Pd(dba)2], the only Pd0 precursor tested, gave the best results in terms of activity, which illustrates the importance of the ability to form a Pd0 species in the catalytic cycle. Finally, base addition resulted in a shortening of the reaction time and most likely facilitates the formation of a Pd0 species. Based on these results, we were able to realize the first attempts towards a rational ligand design aimed at a high selectivity for mono- and diether formation.


Assuntos
Butadienos/química , Glicerol/química , Compostos Organofosforados/química , Paládio/química , Catálise , Ligantes , Estrutura Molecular , Temperatura , Fatores de Tempo
4.
Org Biomol Chem ; 6(3): 523-31, 2008 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-18219423

RESUMO

Reactive phosphonates are important probes to target the active site of serine hydrolases, one of the largest and most diverse family of enzymes. Developing such inhibitory probes is of special importance in activity based protein profiling, a strategy that is increasingly used to gain information about a certain class of enzymes in complex proteosomes. Therefore, gaining detailed information about these inhibition events on the individual protein level is important since it affords information that can be used to fine-tune the probe for a specific task. Here, we report a novel and versatile synthesis protocol to access a variety of functionalised p-nitrophenyl phosphonate (PNPP) inhibitors from a common azide functionalised precursor using click chemistry. The obtained PNPPs were successfully used to covalently label serine hydrolases in their active sites with molecular tags. Furthermore, a model study is described in which we developed straightforward protocols that can be used to study protein inhibition events. Kinetic studies using UV-Vis and fluorescence spectroscopy techniques revealed that these PNPPs possess different inhibition rates for various proteins and were shown to be suitable probes to discriminate between various lipases. Additionally, we demonstrate that PNPPs are highly selective for serine hydrolases, making these probes very interesting as diagnostic or affinity probes for studying proteins in complex proteosomes.


Assuntos
Marcadores de Afinidade/síntese química , Marcadores de Afinidade/metabolismo , Hidrolases/antagonistas & inibidores , Hidrolases/metabolismo , Organofosfonatos/síntese química , Organofosfonatos/metabolismo , Serina/metabolismo , Sítios de Ligação , Compostos de Dansil/química , Compostos de Dansil/metabolismo , Hidrolases/química , Cinética , Nitrofenóis , Proteoma/metabolismo , Espectrometria de Fluorescência , Especificidade por Substrato
5.
Chemistry ; 11(23): 6869-77, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16224766

RESUMO

The work described herein presents a strategy for the regioselective introduction of organometallic complexes into the active site of the lipase cutinase. Nitrophenol phosphonate esters, well known for their lipase inhibitory activity, are used as anchor functionalities and were found to be ideal tools to develop a single-site-directed immobilization method. A small series of phosphonate esters, covalently attached to ECE "pincer"-type d8-metal complexes through a propyl tether (ECE=[C6H3(CH2E)(2)-2,6]-; E=NR2 or SR), were designed and synthesized. Cutinase was treated with these organometallic phosphonate esters and the new metal-complex/protein hybrids were identified as containing exactly one organometallic unit per protein. The organometallic proteins were purified by membrane dialysis and analyzed by ESI-mass spectrometry. The major advantages of this strategy are: 1) one transition metal can be introduced regioselectively and, hence, the metal environment can potentially be fine-tuned; 2) purification procedures are facile due to the use of pre-synthesized metal complexes; and, most importantly, 3) the covalent attachment of robust organometallic pincer complexes to an enzyme is achieved, which will prevent metal leaching from these hybrids. The approach presented herein can be regarded as a tool in the development of regio- and enantioselective catalyst as well as analytical probes for studying enzyme properties (e.g., structure) and, hence, is a "proof-of-principle design" study in enzyme chemistry.


Assuntos
Lipase/metabolismo , Compostos Organometálicos/metabolismo , Sítios de Ligação , Lipase/química , Espectroscopia de Ressonância Magnética , Compostos Organometálicos/química , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
6.
J Org Chem ; 68(3): 675-85, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12558385

RESUMO

Shape-persistent multi(NCN-palladium and/or -platinum) complexes having one- (5 and 6), two- (1 and 2), and three-dimensional (3 and 4) geometries were prepared in moderate to good yields. Two different approaches were used to construct the multimetallic materials: (i) the construction of the multisite ligands followed by the permetalation step and (ii) selective and mild one-pot coupling of monometallic buiding blocks to a multifunctional shape-persistent organic core molecule. The first approach was used to prepare the palladated and/or platinated tris- (2) and bis(NCN-pincer) (5) complexes, while the second approach afforded the palladated and platinated octakis- (3) and dodecakis(NCN-pincer) (4) complexes. Complexes 1-6 were subjected to nanofiltration (NF) experiments in order to investigate the influence of rigidity and geometry on the retention of these molecules by NF membranes. For this purpose, the corresponding (NCN-Pt-X)(n)() complexes (1c-4c, 5, and 6) were used since exposing these complexes to sulfur dioxide in solution resulted in the formation of bright orange complexes, allowing the use of UV/vis spectroscopy to accurately determine the concentrations of 1-6 in both retentate and permeate. Using the MPF-60 (MWCO = 400) NF-membrane, retention rates of 82.4 (6), 93.9 (1c), 98.7 (2c), 99.5 (3c), 99.6 (5), and >99.9% (4c) were found, while 2c and 4c in combination with the MPF-50 (MWCO = 700) NF-membrane were retained in 97.6 and 99.9%, respectively. A clear relationship is observed between the dimensions calculated by molecular modeling and the retention rates of 1-6. The one-dimensional bis(pincer-platinum) complex 5, however, shows an unexpectedly high retention rate (99.6%) that can be due to precipitation of the complex in the membrane (clogging of the membrane) and/or to the formation of larger aggregates near the membrane. In addition, comparison of 2 and 4 with flexible nickelated G0- and G1-dendrimers with similar dimensions proved that a high degree of rigidity in the backbone of macromolecular complexes indeed leads to more efficient retentions of these multimetallic materials by NF-membranes.

7.
J Biotechnol ; 90(3-4): 183-93, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12071225

RESUMO

An overview is presented of the recent developments in the use of dendritic supports in organic synthesis. Examples are presented of the application of dendritic supports in both liquid- and solid-phase organic synthesis. In liquid-phase synthesis, soluble dendrimers are used as the substrate support, while in solid-phase synthesis, 'dendronized' insoluble resins are used for this purpose. Selected examples of the synthesis of compound libraries on dendritic supports via combinatorial techniques are discussed.


Assuntos
Química Orgânica/métodos , Substâncias Macromoleculares , Polímeros/síntese química , Biotecnologia/métodos , Técnicas de Química Combinatória/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...