Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5077, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871743

RESUMO

Optical nonreciprocity is manifested as a difference in the transmission of light for the opposite directions of excitation. Nonreciprocal optics is traditionally realized with relatively bulky components such as optical isolators based on the Faraday rotation, hindering the miniaturization and integration of optical systems. Here we demonstrate free-space nonreciprocal transmission through a metasurface comprised of a two-dimensional array of nanoresonators made of silicon hybridized with vanadium dioxide (VO2). This effect arises from the magneto-electric coupling between Mie modes supported by the resonator. Nonreciprocal response of the nanoresonators occurs without the need for external bias; instead, reciprocity is broken by the incident light triggering the VO2 phase transition for only one direction of incidence. Nonreciprocal transmission is broadband covering over 100 nm in the telecommunication range in the vicinity of λ = 1.5 µm. Each nanoresonator unit cell occupies only ~0.1 λ3 in volume, with the metasurface thickness measuring about half-a-micron. Our self-biased nanoresonators exhibit nonreciprocity down to very low levels of intensity on the order of 150 W/cm2 or a µW per nanoresonator. We estimate picosecond-scale transmission fall times and sub-microsecond scale transmission rise. Our demonstration brings low-power, broadband and bias-free optical nonreciprocity to the nanoscale.

2.
Sci Adv ; 9(17): eadg2655, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37126557

RESUMO

Higher-order optical harmonics entered the realm of nanostructured solids being observed recently in optical gratings and metasurfaces with a subwavelength thickness. Structuring materials at the subwavelength scale allows us toresonantly enhance the efficiency of nonlinear processes and reduce the size of high-harmonic sources. We report the observation of up to a seventh harmonic generated from a single subwavelength resonator made of AlGaAs material. This process is enabled by careful engineering of the resonator geometry for supporting an optical mode associated with a quasi-bound state in the continuum in the mid-infrared spectral range at around λ = 3.7 µm pump wavelength. The resonator volume measures ~0.1 λ3. The resonant modes are excited with an azimuthally polarized tightly focused beam. We evaluate the contributions of perturbative and nonperturbative nonlinearities to the harmonic generation process. Our work proves the possibility to miniaturize solid-state sources of high harmonics to the subwavelength volumes.

3.
Nano Lett ; 23(6): 2228-2232, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36946059

RESUMO

We demonstrate the effect of spin-momentum locking of upconversion photoluminescence emitted from rare-earth doped nanocrystals coupled to a phase-gradient dielectric metasurface. We observe different directionalities for left and right circular polarized light and associate this experimental observation with the photonic Rashba effect realized for upconverted photoluminescence that is manifested in the spin-dependent splitting of emitted light in the momentum space.

4.
Nano Lett ; 22(10): 4200-4206, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35561257

RESUMO

Multiphoton processes of absorption photoluminescence have enabled a wide range of applications including three-dimensional microfabrication, data storage, and biological imaging. While the applications of two-photon and three-photon absorption and luminescence have matured considerably, higher-order photoluminescence processes remain more challenging to study due to their lower efficiency, particularly in subwavelength systems. Here, we report the observation of five-photon luminescence from a single subwavelength nanoantenna at room temperature enabled by the Mie resonances. We excite an AlGaAs resonator at around 3.6 µm and observe photoluminescence at around 740 nm. We show that the interplay of the Mie multipolar modes at the subwavelength scale can enhance the efficiency of the five-photon luminescence by at least 4 orders of magnitude, being limited only by sensitivity of our detector. Our work paves the way toward applications of higher-order multiphoton processes at the subwavelength scales enabled by the physics of Mie resonances.


Assuntos
Luminescência , Fótons
5.
Nano Lett ; 21(15): 6563-6568, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34282919

RESUMO

We study active dielectric metasurfaces composed of two-dimensional arrays of split-nanodisk resonators fabricated in InGaAsP membranes with embedded quantum wells. Depending on the geometric parameters, such split-nanodisk resonators can operate in the optical anapole regime originating from an overlap of the electric dipole and toroidal dipole Mie-resonant optical modes, thus supporting strongly localized fields and high-Q resonances. We demonstrate room-temperature lasing from the anapole lattices of engineered active metasurfaces with low threshold and high coherence.

6.
Nano Lett ; 21(11): 4592-4597, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34008406

RESUMO

Topological states of light represent counterintuitive optical modes localized at boundaries of finite-size optical structures that originate from the properties of the bulk. Being defined by bulk properties, such boundary states are insensitive to certain types of perturbations, thus naturally enhancing robustness of photonic circuitries. Conventionally, the N-dimensional bulk modes correspond to (N - 1)-dimensional boundary states. The higher-order bulk-boundary correspondence relates N-dimensional bulk to boundary states with dimensionality reduced by more than 1. A special interest lies in miniaturization of such higher-order topological states to the nanoscale. Here, we realize nanoscale topological corner states in metasurfaces with C6-symmetric honeycomb lattices. We directly observe nanoscale topology-empowered edge and corner localizations of light and enhancement of light-matter interactions via a nonlinear imaging technique. Control of light at the nanoscale empowered by topology may facilitate miniaturization and on-chip integration of classical and quantum photonic devices.

7.
Nano Lett ; 21(4): 1765-1771, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33539099

RESUMO

Sharp optical resonances in high-index dielectric nanostructures have recently attracted significant attention for their promising applications in nanophotonics. Fano resonances, as well as resonances associated with bound states in the continuum (BIC), have independently shown a great potential for applications in nanoscale lasers, sensors, and nonlinear optical devices. Here, we demonstrate experimentally a close connection between Fano and quasi-BIC resonances excited in individual dielectric nanoantennas. We analyze systematically the resonant response of AlGaAs nanoantennas pumped with a structured light in the near-infrared range. We trace a variation of the scattering spectrum that fully agrees with an analytical expression governed by a Fano parameter and observe directly a transition to a quasi-BIC resonance. Our results suggest a unified approach toward the analysis of sharp resonances in subwavelength nanostructures originating from strong coupling of optical modes that can provide high energy localization for enhanced light-matter interactions.

8.
Nano Lett ; 20(6): 4370-4376, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32374616

RESUMO

Nonlinear metasurfaces incorporate many of the functionalities of their linear counterparts such as wavefront shaping, but simultaneously they perform nonlinear optical transformations. This dual functionality leads to a rather unintuitive physical behavior which is still widely unexplored for many photonic applications. The nonlinear processes render some basic principles governing the functionality of linear metasurfaces. Exemplarily, the superposition principle and the geometric optics approximation become not directly applicable to nonlinear metasurfaces. On the other hand, nonlinear metasurfaces facilitate new phenomena that are not possible in the linear regime. Here, we study the imaging of objects through a dielectric nonlinear metalens. We illuminate objects by infrared light and record their generated images at the visible third-harmonic wavelengths. We revisit the classical lens theory and suggest a generalized Gaussian lens equation for nonlinear imaging, verified both experimentally and analytically. We also demonstrate experimentally higher-order spatial correlations facilitated by the nonlinear metalens, resulting in additional image features.

9.
Science ; 361(6407): 1104-1108, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30213910

RESUMO

Metasurfaces based on resonant nanophotonic structures have enabled innovative types of flat-optics devices that often outperform the capabilities of bulk components, yet these advances remain largely unexplored for quantum applications. We show that nonclassical multiphoton interferences can be achieved at the subwavelength scale in all-dielectric metasurfaces. We simultaneously image multiple projections of quantum states with a single metasurface, enabling a robust reconstruction of amplitude, phase, coherence, and entanglement of multiphoton polarization-encoded states. One- and two-photon states are reconstructed through nonlocal photon correlation measurements with polarization-insensitive click detectors positioned after the metasurface, and the scalability to higher photon numbers is established theoretically. Our work illustrates the feasibility of ultrathin quantum metadevices for the manipulation and measurement of multiphoton quantum states, with applications in free-space quantum imaging and communications.

10.
Nano Lett ; 17(6): 3914-3918, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28511012

RESUMO

Nonlinear effects at the nanoscale are usually associated with the enhancement of electric fields in plasmonic structures. Recently emerged new platform for nanophotonics based on high-index dielectric nanoparticles utilizes optically induced magnetic response via multipolar Mie resonances and provides novel opportunities for nanoscale nonlinear optics. Here, we observe strong second-harmonic generation from AlGaAs nanoantennas driven by both electric and magnetic resonances. We distinguish experimentally the contribution of electric and magnetic nonlinear response by analyzing the structure of polarization states of vector beams in the second-harmonic radiation. We control continuously the transition between electric and magnetic nonlinearities by tuning polarization of the optical pump. Our results provide a direct observation of nonlinear optical magnetism through selective excitation of multipolar nonlinear modes in nanoantennas.

11.
Nat Commun ; 7: 11329, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27072604

RESUMO

Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. Our findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light.

12.
Sci Rep ; 6(1): 26, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28442721

RESUMO

Excitation and manipulation of surface plasmons (SPs) are essential in developing cutting-edge plasmonic devices for medical diagnostics, biochemical spectroscopy and communications. The most common approach involves designing an array of periodic slits or grating apertures that enables coupling of the incident light to the SP modes. In recent years, plasmonic resonances, including extraordinary optical transmission through periodic arrays, quasicrystals and random aperture arrays, have been investigated in the free space. However, most of the studies have been limited to the far field detection of the transmission resonance. Here, we perform near-field measurements of the SPs on quasicrystal metasurfaces. We discover that the reciprocal vector determines the propagation modes of the SPs in the quasicrystal lattice which can be well explained by the quasi-momentum conservation rule. Our findings demonstrate vast potential in developing plasmonic metasurfaces with unique device functionalities that are controlled by the propagation modes of the SPs in quasicrystals.

13.
Opt Lett ; 40(8): 1659-62, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25872041

RESUMO

We demonstrate the enhancement of magnetic dipole spontaneous emission from Eu3+ ions by an engineered plasmonic nanostructure that controls the electromagnetic environment of the emitter. Using an optical microscope setup, an enhancement in the intensity of the Eu3+ magnetic dipole emission was observed for emitters located in close vicinity to a gold nanohole array designed to support plasmonic resonances overlapping with the emission spectrum of the ions.

14.
Opt Lett ; 39(3): 462-5, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487840

RESUMO

We derive general coupled-mode equations describing the nonlinear interaction of electromagnetic modes in periodic media with loss and gain. Our approach is rigorously based on the Lorentz reciprocity theorem, and it can be applied to a broad range of metal-dielectric photonic structures, including plasmonic waveguides and metamaterials. We verify that our general results agree with the previous analysis of particular cases, and predict novel effects on self- and cross-phase modulation in multilayer nonlinear fishnet metamaterials.

15.
Opt Express ; 20(14): 15100-5, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22772207

RESUMO

We study the anisotropic properties of multilayer fishnet optical metamaterials and describe topological transitions between the elliptic and hyperbolic dispersion regimes. In contrast to other hyperbolic media, multilayer fishnet metamaterials may have negative components not only in the effective permittivity tensor but also in the effective permeability tensor, thus allowing the realization of magnetic hyperbolic and generalized indefinite media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...