Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833871

RESUMO

The human quest for sustainable habitation of extraterrestrial environments necessitates a robust understanding of life's adaptability to the unique conditions of spaceflight. This study provides a comprehensive proteomic dissection of the Arabidopsis plant's responses to the spaceflight environment through a meta-analysis of proteomics data from four separate spaceflight experiments conducted on the International Space Station (ISS) in different hardware configurations. Raw proteomics LC/MS spectra were analyzed for differential expression in MaxQuant and Perseus software. The analysis of dissimilarities among the datasets reveals the multidimensional nature of plant proteomic responses to spaceflight, impacted by variables such as spaceflight hardware, seedling age, lighting conditions, and proteomic quantification techniques. By contrasting datasets that varied in light exposure, we elucidated proteins involved in photomorphogenesis and skotomorphogenesis in plant spaceflight responses. Additionally, with data from an onboard 1 g control experiment, we isolated proteins that specifically respond to the microgravity environment and those that respond to other spaceflight conditions. This study identified proteins and associated metabolic pathways that are consistently impacted across the datasets. Notably, these shared proteins were associated with critical metabolic functions, including carbon metabolism, glycolysis, gluconeogenesis, and amino acid biosynthesis, underscoring their potential significance in Arabidopsis' spaceflight adaptation mechanisms and informing strategies for successful space farming.


Assuntos
Arabidopsis , Voo Espacial , Ausência de Peso , Humanos , Arabidopsis/metabolismo , Plântula/fisiologia , Proteômica
2.
NPJ Microgravity ; 9(1): 21, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941263

RESUMO

Spaceflight presents a multifaceted environment for plants, combining the effects on growth of many stressors and factors including altered gravity, the influence of experiment hardware, and increased radiation exposure. To help understand the plant response to this complex suite of factors this study compared transcriptomic analysis of 15 Arabidopsis thaliana spaceflight experiments deposited in the National Aeronautics and Space Administration's GeneLab data repository. These data were reanalyzed for genes showing significant differential expression in spaceflight versus ground controls using a single common computational pipeline for either the microarray or the RNA-seq datasets. Such a standardized approach to analysis should greatly increase the robustness of comparisons made between datasets. This analysis was coupled with extensive cross-referencing to a curated matrix of metadata associated with these experiments. Our study reveals that factors such as analysis type (i.e., microarray versus RNA-seq) or environmental and hardware conditions have important confounding effects on comparisons seeking to define plant reactions to spaceflight. The metadata matrix allows selection of studies with high similarity scores, i.e., that share multiple elements of experimental design, such as plant age or flight hardware. Comparisons between these studies then helps reduce the complexity in drawing conclusions arising from comparisons made between experiments with very different designs.

3.
Front Plant Sci ; 13: 992702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531386

RESUMO

The potential benefits of adding raw, non-food, lignocellulosic plant material as a carbon source for mixotrophic growth of microalgae have previously been demonstrated. This approach has advantages over using traditional carbon sources like glucose or acetate due to wide-spread plant biomass availability and substrate recalcitrance to bacterial contamination. Here, we report the overall growth characteristics and explore the metabolic patterns of Scenedesmus obliquus cultured in the presence raw plant substrate. An initial screen of plant substrate candidates showed an increase in specific growth rate and biomass accumulation when S. obliquus was cultured in the presence of switchgrass or yard waste compared to media alone. We observed a near doubling of microalgal dry weight when S. obliquus was grown with 0.2% (w/v) switchgrass under ambient CO2. Scanning electron microscopy (SEM) of corn stem after S. obliquus cultivation exhibited substantial phloem degradation. Transcriptomic analyses of S. obliquus during mid- and late-log phase growth revealed a dynamic metabolic landscape within many KEGG pathways. Notably, differential expression was observed for several potential glycosyl hydrolases. We also investigated the influence of switchgrass on the growth of S. obliquus at 50 L volume in mini raceway ponds to determine the scalability of this approach.

4.
Methods Mol Biol ; 2368: 199-214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34647257

RESUMO

Proteomics has the capacity to identify and quantify the proteins present in a sample. The technique has been used extensively across all model organisms to study various physiological processes and signaling pathways. In addition to providing a global view of regulatory processes inside a cell, proteomics can also be used to identify candidate genes and retrieve information on alternative isoforms of known proteins. Here, we provide protocols for protein extraction from Arabidopsis thaliana seedlings and describe analysis techniques used after data collection. This approach was originally used for the Biological Research in Canisters (BRIC) 20 spaceflight experiment but is valid for any ground-based or flight experiment. Extraction protocols for soluble and membrane proteins and basic analysis and quality metrics for MS/MS data are provided. Avenues for data analysis post-MS/MS data acquisition and details of software that can be used in gathering structural data on proteins of interest are also included. Use of differential abundance and network-based approaches for proteomics data analyses can reveal regulatory patterns not apparent through differential abundance or transcriptomic data alone.


Assuntos
Arabidopsis , Proteômica , Voo Espacial , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Espectrometria de Massas em Tandem
5.
Plant Sci ; 314: 111105, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895542

RESUMO

Plant signaling components are often involved in numerous processes. Calcium, reactive oxygen species, and other signaling molecules are essential to normal biotic and abiotic responses. Yet, the summation of these components is integrated to produce a specific response despite their involvement in a myriad of response cascades. In the response to gravity, the role of many of these individual components has been studied, but a specific sequence of signals has not yet been assembled into a cohesive schematic of gravity response signaling. Herein, we provide a review of existing knowledge of gravity response and differential protein and gene regulation induced by the absence of gravity stimulus aboard the International Space Station and propose an integrated theoretical schematic of gravity response incorporating that information. Recent developments in the role of nitric oxide in gravity signaling provided some of the final contextual pillars for the assembly of the model, where nitric oxide and the role of cysteine S-nitrosation may be central to the gravity response. The proposed schematic accounts for the known responses to reorientation with respect to gravity in roots-the most well studied gravitropic plant tissue-and is supported by the extensive evolutionary conservation of regulatory amino acids within protein components of the signaling schematic. The identification of a role of nitric oxide in regulating the TIR1 auxin receptor is indicative of the broader relevance of the schematic in studying a multitude of environmental and stress responses. Finally, there are several experimental approaches that are highlighted as essential to the further study and validation of this schematic.


Assuntos
Gravitropismo/efeitos dos fármacos , Sensação Gravitacional/efeitos dos fármacos , Óxido Nítrico/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Raízes de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Plant Cell ; 33(3): 531-547, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33955497

RESUMO

Leaves are asymmetric, with different functions for adaxial and abaxial tissue. The bundle sheath (BS) of C3 barley (Hordeum vulgare) is dorsoventrally differentiated into three types of cells: adaxial structural, lateral S-type, and abaxial L-type BS cells. Based on plasmodesmatal connections between S-type cells and mestome sheath (parenchymatous cell layer below bundle sheath), S-type cells likely transfer assimilates toward the phloem. Here, we used single-cell RNA sequencing to investigate BS differentiation in C4 maize (Zea mays L.) plants. Abaxial BS (abBS) cells of rank-2 intermediate veins specifically expressed three SWEET sucrose uniporters (SWEET13a, b, and c) and UmamiT amino acid efflux transporters. SWEET13a, b, c mRNAs were also detected in the phloem parenchyma (PP). We show that maize has acquired a mechanism for phloem loading in which abBS cells provide the main route for apoplasmic sucrose transfer toward the phloem. This putative route predominates in veins responsible for phloem loading (rank-2 intermediate), whereas rank-1 intermediate and major veins export sucrose from the PP adjacent to the sieve element companion cell complex, as in Arabidopsis thaliana. We surmise that abBS identity is subject to dorsoventral patterning and has components of PP identity. These observations provide insights into the unique transport-specific properties of abBS cells and support a modification to the canonical phloem loading pathway in maize.


Assuntos
Floema/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Floema/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Zea mays/genética
7.
iScience ; 24(4): 102361, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33870146

RESUMO

With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility, and reusability of pipeline data; to provide a template for data processing of future spaceflight-relevant datasets; and to encourage cross-analysis of data from other databases with the data available in GeneLab.

8.
BMC Plant Biol ; 20(1): 237, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460700

RESUMO

BACKGROUND: Understanding of gravity sensing and response is critical to long-term human habitation in space and can provide new advantages for terrestrial agriculture. To this end, the altered gene expression profile induced by microgravity has been repeatedly queried by microarray and RNA-seq experiments to understand gravitropism. However, the quantification of altered protein abundance in space has been minimally investigated. RESULTS: Proteomic (iTRAQ-labelled LC-MS/MS) and transcriptomic (RNA-seq) analyses simultaneously quantified protein and transcript differential expression of three-day old, etiolated Arabidopsis thaliana seedlings grown aboard the International Space Station along with their ground control counterparts. Protein extracts were fractionated to isolate soluble and membrane proteins and analyzed to detect differentially phosphorylated peptides. In total, 968 RNAs, 107 soluble proteins, and 103 membrane proteins were identified as differentially expressed. In addition, the proteomic analyses identified 16 differential phosphorylation events. Proteomic data delivered novel insights and simultaneously provided new context to previously made observations of gene expression in microgravity. There is a sweeping shift in post-transcriptional mechanisms of gene regulation including RNA-decapping protein DCP5, the splicing factors GRP7 and GRP8, and AGO4,. These data also indicate AHA2 and FERONIA as well as CESA1 and SHOU4 as central to the cell wall adaptations seen in spaceflight. Patterns of tubulin-α 1, 3,4 and 6 phosphorylation further reveal an interaction of microtubule and redox homeostasis that mirrors osmotic response signaling elements. The absence of gravity also results in a seemingly wasteful dysregulation of plastid gene transcription. CONCLUSIONS: The datasets gathered from Arabidopsis seedlings exposed to microgravity revealed marked impacts on post-transcriptional regulation, cell wall synthesis, redox/microtubule dynamics, and plastid gene transcription. The impact of post-transcriptional regulatory alterations represents an unstudied element of the plant microgravity response with the potential to significantly impact plant growth efficiency and beyond. What's more, addressing the effects of microgravity on AHA2, CESA1, and alpha tubulins has the potential to enhance cytoskeletal organization and cell wall composition, thereby enhancing biomass production and growth in microgravity. Finally, understanding and manipulating the dysregulation of plastid gene transcription has further potential to address the goal of enhancing plant growth in the stressful conditions of microgravity.


Assuntos
Arabidopsis/metabolismo , Plântula/metabolismo , Voo Espacial , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sensação Gravitacional , Oxirredução , Proteômica , Processamento Pós-Transcricional do RNA , Espécies Reativas de Oxigênio/metabolismo , Ausência de Peso
9.
J Transl Med ; 17(1): 170, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118040

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a debilitating disease with few treatment options. Progress towards new therapies requires validated disease biomarkers, but there is no consensus on which fluid-based measures are most informative. METHODS: This study analyzed microarray data derived from blood samples of patients with ALS (n = 396), ALS mimic diseases (n = 75), and healthy controls (n = 645). Goals were to provide in-depth analysis of differentially expressed genes (DEGs), characterize patient-to-patient heterogeneity, and identify candidate biomarkers. RESULTS: We identified 752 ALS-increased and 764 ALS-decreased DEGs (FDR < 0.10 with > 10% expression change). Gene expression shifts in ALS blood broadly resembled acute high altitude stress responses. ALS-increased DEGs had high exosome expression, were neutrophil-specific, associated with translation, and overlapped significantly with genes near ALS susceptibility loci (e.g., IFRD1, TBK1, CREB5). ALS-decreased DEGs, in contrast, had low exosome expression, were erythroid lineage-specific, and associated with anemia and blood disorders. Genes encoding neurofilament proteins (NEFH, NEFL) had poor diagnostic accuracy (50-53%). However, support vector machines distinguished ALS patients from ALS mimics and controls with 87% accuracy (sensitivity: 86%, specificity: 87%). Expression profiles were heterogeneous among patients and we identified two subgroups: (i) patients with higher expression of IL6R and myeloid lineage-specific genes and (ii) patients with higher expression of IL23A and lymphoid-specific genes. The gene encoding copper chaperone for superoxide dismutase (CCS) was most strongly associated with survival (HR = 0.77; P = 1.84e-05) and other survival-associated genes were linked to mitochondrial respiration. We identify a 61 gene signature that significantly improves survival prediction when added to Cox proportional hazard models with baseline clinical data (i.e., age at onset, site of onset and sex). Predicted median survival differed 2-fold between patients with favorable and risk-associated gene expression signatures. CONCLUSIONS: Peripheral blood analysis informs our understanding of ALS disease mechanisms and genetic association signals. Our findings are consistent with low-grade neutrophilia and hypoxia as ALS phenotypes, with heterogeneity among patients partly driven by differences in myeloid and lymphoid cell abundance. Biomarkers identified in this study require further validation but may provide new tools for research and clinical practice.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/genética , Biomarcadores/sangue , Perfilação da Expressão Gênica , Hipóxia/complicações , Transtornos Leucocíticos/complicações , Neutrófilos/patologia , Doença da Altitude/sangue , Doença da Altitude/genética , Esclerose Lateral Amiotrófica/imunologia , Linhagem da Célula/genética , Eritrócitos/metabolismo , Exossomos/metabolismo , Feminino , Regulação da Expressão Gênica , Loci Gênicos , Predisposição Genética para Doença , Humanos , Hipóxia/sangue , Hipóxia/genética , Transtornos Leucocíticos/sangue , Transtornos Leucocíticos/genética , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Superóxido Dismutase , Máquina de Vetores de Suporte , Análise de Sobrevida , Transcriptoma/genética
10.
Growth Horm IGF Res ; 46-47: 1-4, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31071497

RESUMO

Growth hormone (GH) exerts a diverse set of effects across many tissues including fat, muscle, bone, kidney, heart, and liver. GH is also a diabetogenic hormone in that it inhibits the actions of insulin. Acromegaly, a condition traditionally characterized by increased levels of growth hormone secretion as a result of pituitary adenoma, results in increased tissue growth, lipolysis, and can result in patients with hyperglycemia and hyperinsulinemia. While current treatment modalities have greatly improved prognoses for most patients, a significant number present clinical symptoms of acromegaly with elevated levels of IGF-1 in the absence of increased GH levels, a phenomenon known as micromegaly. This condition presents a challenge to most currently used treatments since the high circulating IGF-1 levels are independent of elevated levels of GH. It has been previously shown that advanced glycation end products (AGE) can stimulate IGF-1 secretion by human monocytes in vitro, demonstrating a possible mechanism for increased IGF-1 levels. To further investigate AGE/GH/IGF-1 interaction, we have reanalyzed a publicly available RNAseq dataset from subcutaneous adipose tissue of patients with acromegaly. S100A1, a member of the calgranulin family of proteins and ligand of the AGE receptor, was shown to be significantly upregulated in patients with acromegaly. These findings identify an important consideration that may help explain the counterintuitive nature of micromegaly, while simultaneously providing new insight into the role of GH in diabetic, inflammatory, and immune pathologies.


Assuntos
Acromegalia/fisiopatologia , Tecido Adiposo Branco/fisiopatologia , Produtos Finais de Glicação Avançada/metabolismo , Neoplasias Hipofisárias/fisiopatologia , Proteínas S100/metabolismo , Tela Subcutânea/fisiopatologia , Redes Reguladoras de Genes , Hormônio do Crescimento Humano/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo
12.
Front Plant Sci ; 10: 156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828342

RESUMO

Viola is a large genus with worldwide distribution and many traits not currently exemplified in model plants including unique breeding systems and the production of cyclotides. Here we report de novo genome assembly and transcriptomic analyses of the non-model species Viola pubescens using short-read DNA sequencing data and RNA-Seq from eight diverse tissues. First, V. pubescens genome size was estimated through flow cytometry, resulting in an approximate haploid genome of 455 Mbp. Next, the draft V. pubescens genome was sequenced and assembled resulting in 264,035,065 read pairs and 161,038 contigs with an N50 length of 3,455 base pairs (bp). RNA-Seq data were then assembled into tissue-specific transcripts. Together, the DNA and transcript data generated 38,081 ab initio gene models which were functionally annotated based on homology to Arabidopsis thaliana genes and Pfam domains. Gene expression was visualized for each tissue via principal component analysis and hierarchical clustering, and gene co-expression analysis identified 20 modules of tissue-specific transcriptional networks. Some of these modules highlight genetic differences between chasmogamous and cleistogamous flowers and may provide insight into V. pubescens' mixed breeding system. Orthologous clustering with the proteomes of A. thaliana and Populus trichocarpa revealed 8,531 sequences unique to V. pubescens, including 81 novel cyclotide precursor sequences. Cyclotides are plant peptides characterized by a stable, cyclic cystine knot motif, making them strong candidates for drug scaffolding and protein engineering. Analysis of the RNA-Seq data for these cyclotide transcripts revealed diverse expression patterns both between transcripts and tissues. The diversity of these cyclotides was also highlighted in a maximum likelihood protein cladogram containing V. pubescens cyclotides and published cyclotide sequences from other Violaceae and Rubiaceae species. Collectively, this work provides the most comprehensive sequence resource for Viola, offers valuable transcriptomic insight into V. pubescens, and will facilitate future functional genomics research in Viola and other diverse plant groups.

13.
Life Sci Space Res (Amst) ; 15: 88-96, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29198318

RESUMO

The Biological Research in Canisters (BRIC) hardware has been used to house many biology experiments on both the Space Transport System (STS, commonly known as the space shuttle) and the International Space Station (ISS). However, microscopic examination of Arabidopsis seedlings by Johnson et al. (2015) indicated the hardware itself may affect cell morphology. The experiment herein was designed to assess the effects of the BRIC-Petri Dish Fixation Units (BRIC-PDFU) hardware on the transcriptome and proteome of Arabidopsis seedlings. To our knowledge, this is the first transcriptomic and proteomic comparison of Arabidopsis seedlings grown with and without hardware. Arabidopsis thaliana wild-type Columbia (Col-0) seeds were sterilized and bulk plated on forty-four 60 mm Petri plates, of which 22 were integrated into the BRIC-PDFU hardware and 22 were maintained in closed containers at Ohio University. Seedlings were grown for approximately 3 days, fixed with RNAlater® and stored at -80 °C prior to RNA and protein extraction, with proteins separated into membrane and soluble fractions prior to analysis. The RNAseq analysis identified 1651 differentially expressed genes; MS/MS analysis identified 598 soluble and 589 membrane proteins differentially abundant both at p < .05. Fold enrichment analysis of gene ontology terms related to differentially expressed transcripts and proteins highlighted a variety of stress responses. Some of these genes and proteins have been previously identified in spaceflight experiments, indicating that these genes and proteins may be perturbed by both conditions.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteoma/análise , Voo Espacial/instrumentação , Transcriptoma , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos da radiação
14.
PLoS One ; 12(4): e0175943, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28423006

RESUMO

Tissue preservation is a minimal requirement for the success of plant RNA and protein expression studies. The standard of snap-freezing in liquid nitrogen is not always practical or possible. RNAlater, a concentrated solution of ammonium and cesium sulfates, has become a standard preservative in the absence of liquid nitrogen. Here, we demonstrate the effectiveness of RNAlater in preserving both RNA and proteins in Arabidopsis thaliana tissues for use in RNAseq and LC-MS/MS analysis of proteins. While successful in preserving plant material, a transcriptomic and proteomic response is evident. Specifically, 5770 gene transcripts, 84 soluble proteins, and 120 membrane-bound proteins were found to be differentially expressed at a log-fold change of ±1 (P ≤ 0.05). This response is mirrored in the abundance of post-translational modifications, with 23 of the 108 (21.3%) phosphorylated proteins showing altered abundance at a log-fold change of ±1 (P ≤ 0.05). While RNAlater is effective in preserving biological information, our findings warrant caution in its use for transcriptomic and proteomic experiments.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Processamento de Proteína Pós-Traducional , RNA de Plantas/genética , Preservação de Tecido/métodos , Transcriptoma , Sulfato de Amônio/química , Césio/química , Cromatografia Líquida , Fixadores/química , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Oxirredução , Fosforilação , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...