Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 45(5): 1549-1557, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27695769

RESUMO

United States Golf Association putting greens are susceptible to nitrogen (N) and phosphorus (P) leaching. Inorganic soil amendments are used to increase moisture and nutrient retention and may influence N and P leaching. This study was conducted to determine whether N and P leaching could be reduced using soil amendments and surfactant-modified soil amendments. Treatments included a control (sand), sand-peat, zeolite, calcined clay, hexadecyltrimethylammonium-zeolite, and hexadecyltrimethylammonium-calcined clay. Lysimeters were filled with a 30-cm rootzone layer of sand-peat (85:15 by volume), below which a 5-cm treatment layer of amendments was placed. A solution of NO-N, NH-N, and orthophosphate-P (2300, 2480, and 4400 µg mL, respectively) was injected at the top of each lysimeter, and leachate was collected using an autocollector set to collect a 10-mL sample every min until four pore volumes were collected. Uncoated amendments, sand, and peat had no influence on NO-N retention, whereas hexadecyltrimethylammonium-coated amendments reduced NO-N leaching to below detectable limits. Both coated and uncoated amendments reduced NH-N leaching, with zeolite reducing NH-N leached to near zero regardless of hexadecyltrimethylammonium coating. Pure sand resulted in a 13% reduction of applied orthophosphate-P leaching, whereas peat contributed to orthophosphate-P leaching. Surfactant-modified amendments reduced orthophosphate-P leaching by as much as 97%. Surfactant-modified soil amendments can reduce NO-N, NH-N, and orthophosphate-P leaching and, thus, may be a viable option for removing leached N and P before they enter surface or ground waters.


Assuntos
Nitrogênio/análise , Fósforo/análise , Tensoativos/química , Raízes de Plantas , Solo , Poluentes do Solo
2.
J Environ Qual ; 42(3): 749-57, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673941

RESUMO

Phosphorus (P) is required to maintain healthy, high-quality, warm-season turf. However, excessive P applications to soils with poor P retention capabilities may lead to leaching losses to groundwater. This field study was conducted to determine the maximum P fertilizer application rate to (Walt.) [Kuntze] 'Floratam' St. Augustinegrass (St. Augustinegrass) and 'Empire' zoysiagrass (zoysiagrass) below which P leaching is minimized. Five P levels ranging from 0 to 5.0 g P m yr were surface applied as triple superphosphate. Turf was established on an uncoated, low-P sand with negligible P retention capacity. Leaf and root growth, tissue P concentration, soil P concentration, soil P saturation, leachate volume, and orthophosphate (P) concentration in leachates were measured. Mehlich 1-extractable soil P (M1-P) and soil P saturation ratio (PSR) increased with time as the P rate increased. Lower M1-P and PSR values were measured with St. Augustinegrass, which absorbed more P than did zoysiagrass. The root system of St. Augustinegrass was larger and deeper compared with zoysiagrass, promoting greater P uptake and less P leaching. If tissue analysis indicates that P fertilization is required and the soil has the capacity to retain additional P, application of 0.8 g P m yr to zoysiagrass and 1.07 g P m yr to St. Augustinegrass is appropriate and does not result in increased P leaching.


Assuntos
Fosfatos , Solo , Fertilizantes , Fósforo , Poluentes do Solo
3.
J Nematol ; 43(3-4): 201-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23430148

RESUMO

Belonolaimus longicaudatus and Helicotylenchus spp. are damaging nematode species on bermudagrass (Cynodon spp.) and seashore paspalum (Paspalum vaginatum) in sandy soils of the southeastern United States. Eight bermudagrass and three seashore paspalum cultivars were tested for responses to both nematode species in field plots for two years in Florida. Soil samples were taken every three months and nematode population densities in soil were quantified. Turfgrass aboveground health was evaluated throughout the growing season. Results showed that all bermudagrass cultivars, except TifSport, were good hosts for B. longicaudatus, and all seashore paspalum cultivars were good hosts for H. pseudorobustus. Overall, bermudagrass was a better host for B. longicaudatus while seashore paspalum was a better host for H. pseudorobustus. TifSport bermudagrass and SeaDwarf seashore paspalum cultivars supported the lowest population densities of B. longicaudatus. Seashore paspalum had a higher percent green cover than bermudagrass in the nematode-infested field. Nematode intolerant cultivars were identified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...