Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7046, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949859

RESUMO

Large laser facilities have recently enabled material characterization at the pressures of Earth and Super-Earth cores. However, the temperature of the compressed materials has been largely unknown, or solely relied on models and simulations, due to lack of diagnostics under these challenging conditions. Here, we report on temperature, density, pressure, and local structure of copper determined from extended x-ray absorption fine structure and velocimetry up to 1 Terapascal. These results nearly double the highest pressure at which extended x-ray absorption fine structure has been reported in any material. In this work, the copper temperature is unexpectedly found to be much higher than predicted when adjacent to diamond layer(s), demonstrating the important influence of the sample environment on the thermal state of materials; this effect may introduce additional temperature uncertainties in some previous experiments using diamond and provides new guidance for future experimental design.

2.
Rev Sci Instrum ; 93(12): 123902, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586918

RESUMO

This study investigates methods to optimize quasi-monochromatic, ∼10 ns long x-ray sources (XRS) for time-resolved x-ray diffraction measurements of phase transitions during dynamic laser compression measurements at the National Ignition Facility (NIF). To support this, we produce continuous and pulsed XRS by irradiating a Ge foil with NIF lasers to achieve an intensity of 2 × 1015 W/cm2, optimizing the laser-to-x-ray conversion efficiency. Our x-ray source is dominated by Ge He-α line emission. We discuss methods to optimize the source to maintain a uniform XRS for ∼10 ns, mitigating cold plasma and higher energy x-ray emission lines.

3.
Rev Sci Instrum ; 93(10): 103548, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319320

RESUMO

A new class of crystal shapes has been developed for x-ray spectroscopy of point-like or small (a few mm) emission sources. These optics allow for dramatic improvement in both achievable energy resolution and total throughput of the spectrometer as compared with traditional designs. This class of crystal shapes, collectively referred to as the Variable-Radii Spiral (VR-Spiral), utilize crystal shapes in which both the major and minor radii are variable. A crystal using this novel VR-Spiral shape has now been fabricated for high-resolution Extended X-ray Absorption Fine Structure (EXAFS) experiments targeting the Pb-L3 (13.0 keV) absorption edge at the National Ignition Facility. The performance of this crystal has been characterized in the laboratory using a microfocus x-ray source, showing that high-resolution high-throughput EXAFS spectra can be acquired using this geometry. Importantly, these successful tests show that the complex three-dimensional crystal shape is manufacturable with the required precision needed to realize the expected performance of better than 5 eV energy resolution while using a 30 mm high crystal. An improved generalized mathematical form for VR-Spiral shapes is also presented allowing improved optimization as compared to the first sinusoidal-spiral based design. This new formulation allows VR-Spiral spectrometers to be designed at any magnification with optimized energy resolution at all energies within the spectrometer bandwidth.

4.
Phys Rev Lett ; 129(11): 114801, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154426

RESUMO

Premature relativistic transparency of ultrathin, laser-irradiated targets is recognized as an obstacle to achieving a stable radiation pressure acceleration in the "light sail" (LS) mode. Experimental data, corroborated by 2D PIC simulations, show that a few-nm thick overcoat surface layer of high Z material significantly improves ion bunching at high energies during the acceleration. This is diagnosed by simultaneous ion and neutron spectroscopy following irradiation of deuterated plastic targets. In particular, copious and directional neutron production (significantly larger than for other in-target schemes) arises, under optimal parameters, as a signature of plasma layer integrity during the acceleration.

5.
Rev Sci Instrum ; 93(5): 053303, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649771

RESUMO

Image plates (IPs) are a popular detector in the field of laser driven ion acceleration, owing to their high dynamic range and reusability. An absolute calibration of these detectors to laser-driven protons in the routinely produced tens of MeV energy range is, therefore, essential. In this paper, the response of Fujifilm BAS-TR IPs to 1-40 MeV protons is calibrated by employing the detectors in high resolution Thomson parabola spectrometers in conjunction with a CR-39 nuclear track detector to determine absolute proton numbers. While CR-39 was placed in front of the image plate for lower energy protons, it was placed behind the image plate for energies above 10 MeV using suitable metal filters sandwiched between the image plate and CR-39 to select specific energies. The measured response agrees well with previously reported calibrations as well as standard models of IP response, providing, for the first time, an absolute calibration over a large range of proton energies of relevance to current experiments.

6.
Rev Sci Instrum ; 92(5): 053102, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243250

RESUMO

We report the development of a high-resolution spectrometer for extended x-ray absorption fine structure (EXAFS) studies of materials under extreme conditions. A curved crystal and detector in the spectrometer are replaceable such that a single body is employed to perform EXAFS measurements at different x-ray energy intervals of interest. Two configurations have been implemented using toroidal crystals with Ge 311 reflection set to provide EXAFS at the Cu K-edge (energy range 8.9-9.8 keV) and Ge 400 reflection set to provide EXAFS at the Ta L3-edge (9.8-10.7 keV). Key performance characteristics of the spectrometer were found to be consistent with design parameters. The data generated at the National Ignition Facility have shown an ≃3 eV spectral resolution for the Cu K-edge configuration and ≃6 eV for the Ta L3-edge configuration.

7.
Rev Sci Instrum ; 91(8): 086101, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872967

RESUMO

Extended x-ray absorption fine structure (EXAFS) measurements require a bright and continuous x-ray source and a detection system with high spectral resolution to capture the modulations of the absorption coefficient above the material absorption edge. When performing EXAFS measurements under laser-driven dynamic compression, it is hence critical to optimize the backlighter x-ray emission. A series of experiments has been conducted at the OMEGA laser facility to characterize titanium (Z = 22), iron (Z = 26), germanium (Z = 32), molybdenum (Z = 42), silver (Z = 47), and gold (Z = 79) foil backlighters irradiated with 3 kJ-12 kJ of laser energy. The spectra have been recorded using a dual crystal spectrometer (DCS), a two-channel transmission spectrometer covering 11 keV-45 keV and 19 keV-90 keV energy bands. The DCS has been calibrated so that the spectral intensities can be compared between different campaigns.

8.
Phys Rev Lett ; 123(20): 205701, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31809064

RESUMO

We study the high-pressure strength of Pb and Pb-4wt%Sb at the National Ignition Facility. We measure Rayleigh-Taylor growth of preformed ripples ramp compressed to ∼400 GPa peak pressure, among the highest-pressure strength measurements ever reported on any platform. We find agreement with 2D simulations using the Improved Steinberg-Guinan strength model for body-centered-cubic Pb; the Pb-4wt%Sb alloy behaves similarly within the error bars. The combination of high-rate, pressure-induced hardening and polymorphism yield an average inferred flow stress of ∼3.8 GPa at high pressure, a ∼250-fold increase, changing Pb from soft to extremely strong.

9.
Rev Sci Instrum ; 89(10): 10G121, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399794

RESUMO

We have tested a set of x-ray sources for use as probes of highly attenuating, laser-driven experiments on the National Ignition Facility (NIF). Unlike traditional x-ray sources that optimize for a characteristic atomic transition (often the n = 2 → n = 1 transition in ionized, He-like atoms), the design presented here maximizes the total photon flux by optimizing for intense, broadband Bremsstrahlung radiation. Three experiments were performed with identical targets, including a uranium x-ray source foil and a tungsten substrate with a narrow (25 µm wide) collimating slit to produce a quasi-1D x-ray source. Two experiments were performed using 12 beams from the NIF laser, each delivering approximately 46 kJ of laser energy but with different laser spatial profiles. This pair yielded similar temporal x-ray emission profiles, spatial resolution, and inferred hot electron temperature. A third experiment with only 6 beams delivering approximately 25 kJ produced a lower hot electron temperature and significantly lower x-ray flux, as well as poorer spatial resolution. The data suggest that laser pointing jitter may have affected the location and intensity of the emitting plasma, producing an emission volume that was not well centered behind the collimating slit and lower intensity than designed. However, the 12-beam design permits x-ray radiography through highly attenuating samples, where lower energy line-emission x-ray sources would be nearly completely attenuated.

10.
Rev Sci Instrum ; 89(10): 10G118, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399837

RESUMO

The Modulation Transfer Function (MTF) is an established means for characterizing imaging performance of X-ray radiography systems. We report on experiments using high energy, laser-driven X-ray radiography systems that assess performance using MTF values measured with the knife-edge projection method. The broadband, hard X-ray systems under study use line-projection imaging produced by narrowing the laser-generated X-ray source with a slit. We find that good contrast resolution can be achieved (the MTF = 0.5 at 75 µm wavelength) and that this performance is reproduced on different laser facilities. We also find that the MTF is sensitive both to the thickness of the line-projection slit and to the backing material thickness under the knife-edge. Both these sensitivities are due to a common mechanism, namely induced changes in the spectrally-averaged spatial widths of the X-ray source. The same line-projection system is also used on experimental campaigns measuring Rayleigh-Taylor instability growth by dynamically imaging sinusoidal, high Z micro-targets with wavelengths of 100 µm or less. By applying the measured MTF values to correct the ripple target contrast measurements, we can predict ripple growth to approximately 10% accuracy.

11.
Rev Sci Instrum ; 89(10): 10F114, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399955

RESUMO

Extended X-ray absorption fine structure (EXAFS) spectroscopy is a powerful tool for in situ characterization of matter in the high energy density regime. An EXAFS platform is currently being developed on the National Ignition Facility. Development of a suitable X-ray backlighter involves minimizing the temporal duration and source size while maximizing spectral smoothness and brightness. One approach involves imploding a spherical shell, which generates a high-flux X-ray flash at stagnation. We present results from a series of experiments comparing the X-ray source properties produced by imploded empty and Ar-filled capsules.

12.
Sci Rep ; 6: 32041, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27557592

RESUMO

We describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating. Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors.

13.
Phys Rev Lett ; 116(8): 085002, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26967419

RESUMO

We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

14.
Rev Sci Instrum ; 86(7): 073308, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233373

RESUMO

Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.


Assuntos
Calibragem , Lasers , Nêutrons , Análise Espectral
15.
Rev Sci Instrum ; 85(9): 093303, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25273715

RESUMO

A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C(6+), O(8+), etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.

16.
Artigo em Inglês | MEDLINE | ID: mdl-24580345

RESUMO

We report the results of a study of the role of prescribed geometrical structures on the front of a target in determining the energy and spatial distribution of relativistic laser-plasma electrons. Our three-dimensional particle-in-cell simulation studies apply to short-pulse, high-intensity laser pulses, and indicate that a judicious choice of target front-surface geometry provides the realistic possibility of greatly enhancing the yield of high-energy electrons while simultaneously confining the emission to narrow (<5°) angular cones.


Assuntos
Elétrons , Lasers , Modelos Químicos , Gases em Plasma/química , Gases em Plasma/efeitos da radiação , Simulação por Computador , Transporte de Elétrons , Doses de Radiação , Propriedades de Superfície/efeitos da radiação
17.
Rev Sci Instrum ; 82(12): 123503, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22225215

RESUMO

We report on the development and characterization of a zirconium Kα imager for high energy density physics research. The imager consists of a spherically bent quartz crystal operating at 15.7 keV photon energy. We compare the performance of the imager in terms of integrated reflectivity (R(int)) and temperature dependent collection efficiency (η(Te)) to that of the widely used Cu Kα imager. Our collisional-radiative simulations show that the new imager can be reliably used up to 250 eV plasma temperature. Monte Carlo simulations show that for a 25 µm thick tracer layer of zirconium, the contribution to Kα production from photo-pumping is only 2%. We present, for the first time, 2D spatially resolved images of zirconium plasmas generated by a high intensity short pulse laser interacting with Zr solid targets.

18.
Am J Clin Nutr ; 68(6 Suppl): 1426S-1430S, 1998 12.
Artigo em Inglês | MEDLINE | ID: mdl-9848511

RESUMO

Results of recent studies in animal models of mammary carcinogenesis showed that the soybean isoflavone genistein is a chemopreventive agent. The objective of the present study was to determine whether soybean isoflavones can be used for the prevention of human breast carcinogenesis. Human adenocarcinoma cells that are either estrogen-receptor positive (such as MCF-7) or estrogen-receptor negative (such as MDA-MB-468) were used as our model system. Treatment of these cells with genistein concentrations of 15, 30, and 45 micromol/L resulted in cell growth inhibition, which was accompanied by the expression of maturation markers. Maturation was monitored by the induction of intracytoplasmic casein and lipids and the membrane protein intercellular adhesion molecule-1. These maturation markers were optimally expressed after 9 d of treatment with 30 mmol genistein/L. Both estrogen receptor-positive and -negative cells became differentiated in response to genistein treatments, suggesting that the antiestrogenic function of genistein is unrelated to the mechanism of cell differentiation. Daidzein, the other major isoflavone component of soybeans, did not induce differentiation in either MCF-7 or MDA-MB-468 cells. To explore the potential applications of this result, we used the nude mouse xenograft model of carcinogenesis. Treatment of either cell line with genistein before implantation into nude mice diminished the cells' tumorigenic potential. These data suggest that initiation of the differentiation program provides a protective effect against tumor growth in mouse xenografts.


Assuntos
Adenocarcinoma/tratamento farmacológico , Anticarcinógenos/uso terapêutico , Neoplasias da Mama/prevenção & controle , Genisteína/uso terapêutico , Isoflavonas/uso terapêutico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Anticarcinógenos/farmacologia , Divisão Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Genisteína/farmacologia , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fenótipo , Células Tumorais Cultivadas/efeitos dos fármacos
19.
Int J Oncol ; 10(4): 753-7, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21533441

RESUMO

The objective of the present study was to determine if genistein can induce human breast adenocarcinoma cell maturation. To gain understanding on its mechanism of action, we used estrogen receptor-positive (ER(+)) MCF-7, and ER MDA-MB-468 cells. Treating these cells with genistein resulted in growth inhibition accompanied by increased cell maturation, which was evaluated by the production of casein and lipids. These maturation markers were optimally expressed after nine days of treatment with 30 mu M of genistein. Since both ER(+) and ER(-) cells became differentiated, we conclude that the ER is not a component of the genistein-initiated scheme of cellular differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...