Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 26(6): 1134-1137, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38307039

RESUMO

A method for phosphorylating oligonucleotides using a thermosensitive "trigger" is hereby presented. The recovery of the phosphate specifically takes place under neutral conditions when subjected to an elevated temperature. Two identical thermolabile protecting groups are differentially removed with the initial release occurring swiftly and the second at a more gradual pace. The delayed deprotection of the second group led to the development of a method for the purification of 5'-phosphorylated oligonucleotides. Microwave irradiation enables the rapid attainment of complete deprotection, in contrast to conventional heating methods.


Assuntos
Micro-Ondas , Oligonucleotídeos , Fosforilação , Fosfatos
2.
Curr Protoc Nucleic Acid Chem ; 68: 2.20.1-2.20.25, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252183

RESUMO

Application of 2-pyridinyl thermolabile protecting groups (2-PyTPGs) for protection of hydroxyl, phosphate, and carboxyl functions is presented in this unit. Their characteristic feature is a unique removal process following the intramolecular cyclization mechanism and induced only by temperature rise. Deprotection rate of 2-PyTPGs is dependent on certain parameters, such as solvent (aqueous or non-aqueous medium), pH values, and electron distribution in a pyridine ring. The presented approach pertains not only to protecting groups but also to an advanced system of controlling certain properties of 2-pyridinyl derivatives. We improved the "chemical switch" method, allowing us to regulate the protecting group stability by inversing the electron distribution in 2-PyTPG. Together with pH values manipulation, this allows us to regulate the protecting group stability. Moreover, phosphite cyclization to oxazaphospholidine provides a very stable but easily reversible tool for phosphate protection/modifications. For all TPGs we confirmed their utility in a system of protecting groups. This concept can contribute to designing the general protecting group that could be useful in bioorganic chemistry. © 2017 by John Wiley & Sons, Inc.


Assuntos
Bioquímica/métodos , Carbonatos/síntese química , Piridinas/química , Ciclização , Radical Hidroxila , Nucleosídeos/química , Fosfatos/química
3.
J Org Chem ; 80(24): 12129-36, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26544024

RESUMO

A novel and effective method is presented for modulating the stability of 2-Pyridinyl Thermolabile Protecting Groups (2-Py TPGs) in the "chemical switch" approach. The main advantage of the discussed approach is the possibility of changing the nucleophilic character of pyridine nitrogen using different switchable factors, which results in an increase or decrease in the thermal deprotection rate. One of the factors is transformation of a nitro into an amine group via reduction with a low-valent titanium in mild conditions. The usefulness of our approach is corroborated using 3'-O-acetyl nucleosides as model compounds. Their stability in various solvents and temperatures before and after reduction is also examined. Pyridine N-oxide and pH are other factors responsible for the nucleophilicity and stability of 2-Pyridinyl Thermolabile Protecting Groups in thermal deprotection. Protonation of 4-amino 2-Pyridinyl Thermolabile Protecting Groups is demonstrated by (1)H-(15)N HMBC and HSQC NMR analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...