Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 152(2): 1045, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36050146

RESUMO

Recent studies have demonstrated that acoustic waves can be used to reconstruct the roughness profile of a rigid scattering surface. In particular, the use of multiple microphones placed above a rough surface as well as an analytical model based on the linearised Kirchhoff integral equations provides a sufficient base for the inversion algorithm to estimate surface geometrical properties. Prone to fail in the presence of high noise and measurement uncertainties, the analytical approach may not always be suitable in analysing measured scattered acoustic pressure. With the aim to improve the robustness of the surface reconstruction algorithms, here it is proposed to use a data-driven approach through the application of a random forest regression algorithm to reconstruct specific parameters of one-dimensional sinusoidal surfaces from airborne acoustic phase-removed pressure data. The data for the training set are synthetically generated through the application of the Kirchhoff integral in predicting scattered sound, and they are further verified with data produced from laboratory measurements. The surface parameters from the measurement sample were found to be recovered accurately for various receiver combinations and with a wide range of noise levels ranging from 0.1% to 30% of the average scattered acoustical pressure amplitude.

2.
Sensors (Basel) ; 18(4)2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29621139

RESUMO

The pattern of the free surface of the turbulent flow in a partially filled circular pipe contains information on the underlying hydraulic processes. However, the roughness of the free surface of flow and its temporal variation in a pipe is a dynamic and non-stationary process that is difficult to measure directly. This work examines a new acoustic method that is used to study the characteristics of the free surface roughness under controlled laboratory conditions. The acoustic method makes use of a continuous sine wave that is transmitted through the air above the turbulent flow of water over a section of the pipe instrumented with an array of wave probes and microphones. The results obtained for a representative range of flow regimes and variety of pipe bed conditions illustrate that it is possible to unambiguously relate variations in the recorded acoustic field to the standard deviation in the free surface roughness and mean flow depth. These variations are clearly linked to the hydraulic friction factor of the pipe, which is shown to be related to airborne acoustic data obtained non-invasively.

3.
J Acoust Soc Am ; 142(5): 3122, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29195466

RESUMO

Experimental data are presented on the Doppler spectra of airborne ultrasound forward scattered by the rough dynamic surface of an open channel turbulent flow. The data are numerically interpreted based on a Kirchhoff approximation for a stationary random water surface roughness. The results show a clear link between the Doppler spectra and the characteristic spatial and temporal scales of the water surface. The decay of the Doppler spectra is proportional to the velocity of the flow near the surface. At higher Doppler frequencies the measurements show a less steep decrease of the Doppler spectra with the frequency compared to the numerical simulations. A semi-empirical equation for the spectrum of the surface elevation in open channel turbulent flows over a rough bed is provided. The results of this study suggest that the dynamic surface of open channel turbulent flows can be characterized remotely based on the Doppler spectra of forward scattered airborne ultrasound. The method does not require any equipment to be submerged in the flow and works remotely with a very high signal to noise ratio.

4.
J Acoust Soc Am ; 142(6): 3387, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29289079

RESUMO

Measurements of the Doppler spectra of airborne ultrasound backscattered by the rough dynamic surface of a shallow turbulent flow are presented in this paper. The interpretation of the observed acoustic signal behavior is provided by means of a Monte Carlo simulation based on the Kirchhoff approximation and on a linear random-phase model of the water surface elevation. Results suggest that the main scattering mechanism is from capillary waves with small amplitude. Waves that travel at the same velocity of the flow, as well as dispersive waves that travel at a range of velocities, are detected, studied, and used in the acoustic Doppler analysis. The dispersive surface waves are not observed when the flow velocity is slow compared to their characteristic velocity. Relatively wide peaks in the experimental spectra also suggest the existence of nonlinear modulations of the short capillary waves, or their propagation in a wide range of directions. The variability of the Doppler spectra with the conditions of the flow can affect the accuracy of the flow velocity estimations based on backscattering Doppler. A set of different methods to estimate this velocity accurately and remotely at different ranges of flow conditions is suggested.

5.
J Acoust Soc Am ; 140(3): 2064, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27914380

RESUMO

Currently, there is no airborne in situ method to reconstruct with high fidelity the instantaneous elevation of a dynamically rough surface of a turbulent flow. This work proposes a holographic method that reconstructs the elevation of a one-dimensional rough water surface from airborne acoustic pressure data. This method can be implemented practically using an array of microphones deployed over a dynamically rough surface or using a single microphone which is traversed above the surface at a speed that is much higher than the phase velocity of the roughness pattern. In this work, the theory is validated using synthetic data calculated with the Kirchhoff approximation and a finite difference time domain method over a number of measured surface roughness patterns. The proposed method is able to reconstruct the surface elevation with a sub-millimeter accuracy and over a representatively large area of the surface. Since it has been previously shown that the surface roughness pattern reflects accurately the underlying hydraulic processes in open channel flow [e.g., Horoshenkov, Nichols, Tait, and Maximov, J. Geophys. Res. 118(3), 1864-1876 (2013)], the proposed method paves the way for the development of non-invasive instrumentation for flow mapping and characterization that are based on the acoustic holography principle.

6.
J Acoust Soc Am ; 134(5): 3619-30, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24180773

RESUMO

Two effective medium models are presented and used to predict complex reflection and transmission coefficients of finite periodic arrays of resonant elastic shells as well as their effective density and bulk modulus at low frequencies. Comparisons with full multiple scattering theory and measurements show that the self-consistent model fails to correctly predict the shape of the transmission/reflection curves when scatterer resonances are close to the first Bragg bandgap. The low frequency grating model, which neglects the evanescent modes and considers scattered wave propagation only in the same direction as the incident one, gives a much better agreement with both measurements and the full multiple scattering theory. Moreover, because it does not require the wavelength to strongly exceed the size of scatterers, the model gives reliable predictions even at frequencies around the first periodicity related bandgap. In contrast to the self-consistent model, the low frequency grating model is applicable when the resonant scatterers have more than two low frequency resonances.


Assuntos
Acústica/instrumentação , Modelos Teóricos , Som , Simulação por Computador , Módulo de Elasticidade , Desenho de Equipamento , Análise de Fourier , Movimento (Física) , Análise Numérica Assistida por Computador , Espalhamento de Radiação , Vibração
7.
J Acoust Soc Am ; 134(2): 939-49, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23927093

RESUMO

In this paper a derivation of the attenuation factor in a waveguide with stochastic walls is presented. The perturbation method and Fourier analysis are employed to derive asymptotically consistent boundary-value problems at each asymptotic order. The derived approximation predicts the attenuation of the propagating mode in a rough waveguide through a correction to the eigenvalue corresponding to smooth walls. The proposed approach can be used to derive results that are consistent with those obtained by Bass et al. [IEEE Trans. Antennas Propag. 22, 278-288 (1974)]. The novelty of the method is that it does not involve the integral Dyson-type equation and, as a result, the large number of statistical moments included in the equation in the form of the mass operator of the volume scattering theory. The derived eigenvalue correction is described by the correlation function of the randomly rough surface. The averaged solution in the plane wave regime is approximated by the exponential function dependent on the derived eigenvalue correction. The approximations are compared with numerical results obtained using the finite element method (FEM). An approach to retrieve the correct deviation in roughness height and correlation length from multiple numerical realizations of the stochastic surface is proposed to account for the oversampling of the rough surface occurring in the FEM meshing procedure.


Assuntos
Acústica , Som , Simulação por Computador , Análise de Elementos Finitos , Análise de Fourier , Modelos Estatísticos , Movimento (Física) , Análise Numérica Assistida por Computador , Espalhamento de Radiação , Processos Estocásticos , Fatores de Tempo
8.
J Acoust Soc Am ; 133(2): 781-91, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23363097

RESUMO

This paper presents and compares three analytical methods for calculating low frequency band gap boundaries in doubly periodic arrays of resonating thin elastic shells. It is shown that both Foldy-type equations (derived with lattice sum expansions in the vicinity of its poles) and a self-consistent scheme could be used to predict boundaries of low-frequency (below the first Bragg band gap) band gaps due to axisymmetric (n=0) and dipolar (n=1) shell resonances. The accuracy of the former method is limited to low filling fraction arrays, however, as the filling fraction increases the application of the matched asymptotic expansions could significantly improve approximations of the upper boundary of band gap related to axisymmetric resonance. The self-consistent scheme is shown to be very robust and gives reliable results even for dense arrays with filling fractions around 70%. The estimates of band gap boundaries can be used in analyzing the performance of periodic arrays (in terms of the band gap width) without using full semi-analytical and numerical models. The results are used to predict the dependence of the position and width of the low frequency band gap on the properties of shells and their periodic arrays.


Assuntos
Acústica , Modelos Teóricos , Som , Simulação por Computador , Módulo de Elasticidade , Movimento (Física) , Periodicidade , Espalhamento de Radiação , Fatores de Tempo , Vibração
9.
J Acoust Soc Am ; 130(6): 3736-45, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22225030

RESUMO

The acoustical performances of regular arrays of cylindrical elements, with their axes aligned and parallel to a ground plane, have been investigated through predictions and laboratory experiments. Semi-analytical predictions based on multiple scattering theory and numerical simulations based on a boundary element formulation have been made. Measurements have been made in an anechoic chamber using arrays of (a) cylindrical acoustically-rigid scatterers (PVC pipes) and (b) thin elastic shells. Insertion loss (IL) spectra due to the arrays have been measured without and with ground planes for several receiver heights. Data and predictions have been compared. The minima in the excess attenuation spectrum i.e., attenuation maxima due to the ground alone resulting from destructive interference between direct and ground-reflected sound waves, tend to have an adverse influence on the band gaps (BG) related to a periodic array in the free field when these two effects coincide. On the other hand, the presence of rigid ground may result in an IL for an array near the ground similar to or, in the case of the first BG, greater than that resulting from a double array, equivalent to the original array plus its ground plane mirror image, in the free field.

10.
J Acoust Soc Am ; 128(6): 3496-506, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21218882

RESUMO

Analytical and numerical approaches have been made to the problems of (a) propagation through a doubly periodic array of elastic shells in air, (b) scattering by a single elastic shell in air, and (c) scattering by a finite periodic array of elastic shells in air. Using the Rayleigh identity and the Kirchhoff-Love approximations, a relationship is found between the elastic material parameters and the size of the bandgap below the first Bragg frequency, which results from the axisymmetric resonance of the shells in an array. Predictions and laboratory data confirm that use of a suitably "soft" non-vulcanized rubber results in substantial insertion loss peaks related to the resonances of the shells. Inclusion of viscoelasticity is found to improve the correspondence between predictions and data. In addition the possible influences of inhomogeneity due to the manufacturing of the elastic shells (i.e., the effects of gluing sheet edges together) and of departures from circular cylindrical cross-sections are considered by means of numerical methods.


Assuntos
Acústica/instrumentação , Modelos Teóricos , Processamento de Sinais Assistido por Computador , Som , Simulação por Computador , Módulo de Elasticidade , Desenho de Equipamento , Análise de Fourier , Látex , Movimento (Física) , Análise Numérica Assistida por Computador , Vibração , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...