Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-432967

RESUMO

The rapid spread of COVID-19 underscores the need for new treatments. Here we report that cannabidiol (CBD), a compound produced by the cannabis plant, inhibits SARS-CoV-2 infection. CBD and its metabolite, 7-OH-CBD, but not congeneric cannabinoids, potently block SARS-CoV-2 replication in lung epithelial cells. CBD acts after cellular infection, inhibiting viral gene expression and reversing many effects of SARS-CoV-2 on host gene transcription. CBD induces interferon expression and up-regulates its antiviral signaling pathway. A cohort of human patients previously taking CBD had significantly lower SARS-CoV-2 infection incidence of up to an order of magnitude relative to matched pairs or the general population. This study highlights CBD, and its active metabolite, 7-OH-CBD, as potential preventative agents and therapeutic treatments for SARS-CoV-2 at early stages of infection.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-274639

RESUMO

There is an urgent need for anti-viral agents that treat SARS-CoV-2 infection. The shortest path to clinical use is repurposing of drugs that have an established safety profile in humans. Here, we first screened a library of 1,900 clinically safe drugs for inhibiting replication of OC43, a human beta-coronavirus that causes the common-cold and is a relative of SARS-CoV-2, and identified 108 effective drugs. We further evaluated the top 26 hits and determined their ability to inhibit SARS-CoV-2, as well as other pathogenic RNA viruses. 20 of the 26 drugs significantly inhibited SARS-CoV-2 replication in human lung cells (A549 epithelial cell line), with EC50 values ranging from 0.1 to 8 micromolar. We investigated the mechanism of action for these and found that masitinib, a drug originally developed as a tyrosine-kinase inhibitor for cancer treatment, strongly inhibited the activity of the SARS-CoV-2 main protease 3CLpro. X-ray crystallography revealed that masitinib directly binds to the active site of 3CLpro, thereby blocking its enzymatic activity. Mastinib also inhibited the related viral protease of picornaviruses and blocked picornaviruses replication. Thus, our results show that masitinib has broad anti-viral activity against two distinct beta-coronaviruses and multiple picornaviruses that cause human disease and is a strong candidate for clinical trials to treat SARS-CoV-2 infection.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-240192

RESUMO

The number of new cases world-wide for the COVID-19 disease is increasing dramatically, while efforts to contain Severe Acute Respiratory Syndrome Coronavirus 2 is producing varied results in different countries. There are three key SARS-CoV-2 enzymes potentially targetable with antivirals: papain-like protease (PLpro), main protease (Mpro), and RNA-dependent RNA polymerase. Of these, PLpro is an especially attractive target because it plays an essential role in several viral replication processes, including cleavage and maturation of viral polyproteins, assembly of the replicase-transcriptase complex (RTC), and disruption of host viral response machinery to facilitate viral proliferation and replication. Moreover, this enzyme is conserved across different coronaviruses and promising inhibitors have already been discovered for its SARS-CoV variant. Here we report a substantive body of structural, biochemical, and virus replication studies that identify several inhibitors of the enzyme from SARS-CoV-2 in both wild-type and mutant forms. These efforts include the first structures of wild-type PLpro, the active site C111S mutant, and their complexes with inhibitors, determined at 1.60-2.70 Angstroms. This collection of structures provides fundamental molecular and mechanistic insight to PLpro, and critically, illustrates details for inhibitors recognition and interactions. All presented compounds inhibit the peptidase activity of PLpro in vitro, and some molecules block SARS-CoV-2 replication in cell culture assays. These collated findings will accelerate further structure-based drug design efforts targeting PLpro, with the ultimate goal of identifying high-affinity inhibitors of clinical value for SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...